我國政府對PM2.5采用如下標(biāo)準(zhǔn):
PM2.5日均值m(微克/立方米)空氣質(zhì)量等級
m<35一級
35≤m≤75二級
m>75超標(biāo)
某市環(huán)保局從180天的市區(qū)PM2.5監(jiān)測數(shù)據(jù)中,隨機(jī)抽取l0天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).
(Ⅰ)求這10天數(shù)據(jù)的中位數(shù).
(Ⅱ)從這l0天的數(shù)據(jù)中任取3天的數(shù)據(jù),記ξ表示空氣質(zhì)量達(dá)到一級的天數(shù),求ξ的分布列;
(Ⅲ)以這10天的PM2.5日均值來估計這180天的空氣質(zhì)量情況,記η為這180天空氣質(zhì)量達(dá)到一級的天數(shù),求η的均值.
考點(diǎn):莖葉圖,離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計
分析:( I)利用莖葉圖和中位數(shù)的定義求解.
( II)由 N=10,M=4,n=3,ξ的可能值為0,1,2,3,利用P(ξ=k)=
C
k
4
C
3-k
6
C
3
10
(k=0,1,2,3),能求出分布列.
( III)一年中每天空氣質(zhì)量達(dá)到一級的概率為
2
5
,由η~B(180,
2
5
)
,能求出一年中空氣質(zhì)量達(dá)到一級的天數(shù)為72天.
解答: 解:( I)由莖葉圖知:
10天的中位數(shù)為
1
2
(38+44)2=41(微克/立方米)…(2分)
( II)由 N=10,M=4,n=3,ξ的可能值為0,1,2,3
利用P(ξ=k)=
C
k
4
C
3-k
6
C
3
10
(k=0,1,2,3)即得分布列:
ξ0123
P
1
6
1
2
3
10
1
30
…(10分)
( III)一年中每天空氣質(zhì)量達(dá)到一級的概率為
2
5
,
由η~B(180,
2
5
)
,
得到Eη=180×
2
5
=72
(天),
∴一年中空氣質(zhì)量達(dá)到一級的天數(shù)為72天.…(13分)
點(diǎn)評:本題考查中位數(shù)的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法和應(yīng)用,解題時要注意莖葉圖的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=a+bi(a,b∈R),且a2-(i-1)a+3b+2i=0
(1)求復(fù)數(shù)z;
(2)若z+
m
z
為實數(shù),求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x2+ax+1

(1)若a∈(-2,2),求f(x)的單調(diào)區(qū)間;
(2)求f(x)值域;
(3)若a>-2,求f(x)在區(qū)間[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為0的等差數(shù)列,且a1,a4,a13成等比數(shù)列,S3=15.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足對于任意n∈N+都有Sn=2n-1,求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a和b是任意非零實數(shù).
(1)求證
|2a+b|+|2a-b|
|a|
≥4
;
(2)若不等式|a+b|+|a-b|≥|a(|2+x|+|2-x|)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四面體PABC中,若E,F(xiàn)分別在棱PC,AB上,且
|CE|
|PC|
=
|AF|
|AB|
=
1
3
,則異面直線PF與BE所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是邊長為2的正方形,PD⊥平面ABCD,E、F分別是PB、AD的中點(diǎn),PD=2.
(Ⅰ)求證:EF∥平面PDC;
(Ⅱ)求三棱錐B-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2x
-lnx的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,有以下命題:
①若a>b,則ac2>bc2
②若ac2>bc2,則a>b;
③若a>b,則a•2c>b•2c
則正確命題序號為
 

查看答案和解析>>

同步練習(xí)冊答案