已知是橢圓E:的兩個(gè)焦點(diǎn),拋物線的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上,

(1)求橢圓E的方程;
(2)如圖,過點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(1)(2)AB為直徑的圓恒過這個(gè)定點(diǎn)(0,1).

試題分析:(1)求出拋物線的焦點(diǎn)得到橢圓的兩個(gè)焦點(diǎn)(即C值),求其中一個(gè)焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),再利用點(diǎn)點(diǎn)之間直線距離最短求出直線y=上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P的坐標(biāo)(即為對(duì)稱點(diǎn)與另一個(gè)焦點(diǎn)連線與直線y=的交點(diǎn)),即得橢圓上一點(diǎn)的坐標(biāo),便可求出a,b,c得到橢圓的標(biāo)準(zhǔn)方程.
(2)直線的斜率為k,通過聯(lián)立方程式,韋達(dá)定理等用斜率k來建立圓的方程,進(jìn)而判斷關(guān)于參數(shù)k的圓是否經(jīng)過定點(diǎn)(即是否有相應(yīng)點(diǎn)的坐標(biāo)使得參數(shù)k的系數(shù)為0即可)
試題解析:
(1)由拋物線的焦點(diǎn)可得:,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為
,因此,橢圓方程為
(2)假設(shè)存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)。
當(dāng)AB軸時(shí),以AB為直徑的圓的方程為:  ①
當(dāng)AB軸時(shí),以AB為直徑的圓的方程為: ②
由①②知定點(diǎn)M。下證:以AB為直徑的圓恒過定點(diǎn)M。設(shè)直線,代入,有。設(shè),則。
,

在y軸上存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)定點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點(diǎn),試問,是否存在軸上的點(diǎn),使得對(duì)任意的為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓 (a>b>0)的上、下頂點(diǎn)分別為A、B,已知點(diǎn)B在直線l:上,且橢圓的離心率e =

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線段PQ中點(diǎn),直線AM交直線l于點(diǎn)C,N為線段BC的中點(diǎn),求證:OM⊥MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別、,點(diǎn)是橢圓短軸的一個(gè)端點(diǎn),且焦距為6,的周長為16.
(I)求橢圓的方程;
(2)求過點(diǎn)且斜率為的直線被橢圓所截的線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)是離心率為的橢圓上的一點(diǎn),斜率為的直線交橢圓兩點(diǎn),且、、三點(diǎn)互不重合.

(1)求橢圓的方程;(2)求證:直線的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知離心率為的雙曲線和離心率為的橢圓有相同的焦點(diǎn)、,是兩曲線的一個(gè)公共點(diǎn),若,則等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,圓,過橢圓上任一與頂點(diǎn)不重合的點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B,直線AB與x軸,y軸分別交于點(diǎn)M,N,則_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.

(1)求橢圓C的方程;
(2)求△ABP面積取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)1、F2是橢圓=1(a>b>0)的左、右焦點(diǎn),點(diǎn)M在x軸上,且,過點(diǎn)F2的直線與橢圓交于A、B兩點(diǎn),且AM⊥x軸,·=0.

(1)求橢圓的離心率;
(2)若△ABF1的周長為,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案