已知雙曲線的離心率e=,過點A(0,-b)和B(a,0)的直線與原點間的距離為

(1)求雙曲線方程

(2)若直線y=kx+m(k≠0,m≠0)與雙曲線交于不同的兩點C、D,且C、D兩點都在以A為圓心的同一個圓上,求m的范圍.

答案:
解析:

  (1)過A(0,-b)的直線方程為,由題意得,

  又,由此解得,故雙曲線方程為

  (2)令

  聯(lián)立直線y=kx+m和雙曲線,得

  當(dāng)

  

  因為C,D在以A為圓心的同一圓上,且P為CD中點,則

  又,則

  ,

  則

  由,得

  化簡得 由

  又解得

  綜上可知:


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知雙曲線關(guān)于兩坐標(biāo)軸對稱,且與圓x2+y2=10相交于點P(3,-1),若此圓過點P的切線與雙曲線的一條漸近線平行,求此雙曲線的方程;
(2)已知雙曲線的離心率e=
5
2
,且與橢圓
x2
13
+
y2
3
=1有共同的焦點,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率e=2,F(xiàn)1、F2為兩焦點,M為雙曲線上一點,若∠F1MF2=60°,且S△MF1F 2=12
3
.求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率e=2,且、分別是雙曲線虛軸的上、下端點  

(Ⅰ)若雙曲線過點,),求雙曲線的方程;

(Ⅱ)在(Ⅰ)的條件下,若是雙曲線上不同的兩點,且,求直線的方程  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率e=2,A,B為雙曲線上兩點,線段AB的垂直平分線為

    ①求雙曲線C經(jīng)過二、四象限的漸近線的傾斜角

    ②試判斷在橢圓C的長軸上是否存在一定點N(a,0),

 使橢圓上的動點M滿足的最小值為3,若存在求出所有可能的a值,若不存在說明理由.

     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率e=2,A,B為雙曲線上兩點,線段AB的垂直平分線為

    ①求雙曲線C經(jīng)過二、四象限的漸近線的傾斜角

    ②試判斷在橢圓C的長軸上是否存在一定點N(a,0),

      使橢圓上的動點M滿足的最小值為3,若存

      在求出所有可能的a值,若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案