函數(shù)f(x)=ax2-2ax+2+b(a≠0)在閉區(qū)間[2,3]上有最大值5,最小值2,則a,b的值為( 。
A、a=1,b=0
B、a=1,b=0或a=-1,b=3
C、a=-1,b=3
D、以上答案均不正確
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)a>0時(shí),函數(shù)在閉區(qū)間[2,3]上為增函數(shù),再根據(jù)最大值5,最小值2,求得a和b的值.當(dāng)a<0時(shí),函數(shù)在閉區(qū)間[2,3]上為減函數(shù),再根據(jù)最大值5,最小值2,求得a和b的值.
解答: 解:函數(shù)f(x)=ax2-2ax+2+b(a≠0)的對(duì)稱(chēng)軸方程為x=1,故當(dāng)a>0時(shí),函數(shù)在閉區(qū)間[2,3]上為增函數(shù),
再根據(jù)最大值5,最小值2,可得f(2)=2+b=2,f(3)=3a+b+2=5,求得a=1,b=0.
當(dāng)a<0時(shí),函數(shù)在閉區(qū)間[2,3]上為減函數(shù),
再根據(jù)最大值5,最小值2,可得f(2)=2+b=5,f(3)=3a+b+2=2,求得a=-1,b=3.
故選:B.
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的外接圓半徑為1,圓心為O,且3
OA
+4
OB
+5
OC
=
0
,則
OC
AB
上的投影為( 。
A、-
2
10
B、
2
10
C、-
3
2
5
D、
3
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sin2x的圖象的一個(gè)對(duì)稱(chēng)中心是( 。
A、(
π
2
,2)
B、(
π
4
,0)
C、(
π
4
,2)
D、(
π
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高三年級(jí)有5個(gè)班級(jí)參加學(xué)校運(yùn)動(dòng)會(huì)100米跑決賽,共有5個(gè)跑道,若在安排比賽賽道時(shí)不將甲班安排在第一及第二賽道上,且甲班和乙班不相鄰,則不同的安排方法有( 。
A、24種B、30種
C、36種D、42種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
0
(et-e-t)dt,則不等式f(loga2)+f(loga
1
2
)≤2f(1)的解集為(  )
A、(0,
1
2
]
B、[2,+∞)
C、[
1
2
,2]
D、(0,
1
2
]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列的公差為1,且a1+a2+a3+…+a99=99,則a3+a6+…+a99的值為( 。
A、0B、33C、66D、99

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=ax(a>0,a≠1),且f(log0.54)=-3,則a的值為( 。
A、
3
B、3
C、9
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:
x
4
+
y
3
=1,M是l上一動(dòng)點(diǎn),過(guò)M作x軸、y軸的垂線,垂足分別為A、B,求在A、B連線上,且滿足
AP
=2
PB
的點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1)且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,設(shè)函數(shù)F(x)=f(x)-mx,若F(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為h(k),求h(k)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案