過橢圓
x2
36
+
y2
25
=1的焦點F1作直線l交橢圓于A、B兩點,F(xiàn)2是此橢圓的另一個焦點,則△ABF2的周長為______.
由橢圓的定義可得,AF1+AF2=12,BF1+BF2=12
△ABF2的周長為AB+AF2+BF2=AF1+BF1+AF2+BF2=24
故答案為:24
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,A、B、C分別為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的頂點和焦點,若∠ABC=90°,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
2
+
y2
b2
=1
的焦點為F1,F(xiàn)2,兩條準線與x軸的交點分別為M,N,若|MN|≤2|F1F2|,則該橢圓離心率取得最小值時的橢圓方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
x2
100
+
y2
36
=1
的焦距等于( 。
A.20B.16C.12D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
9
+
y2
5
=1
的左、右焦點分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓周長為2π,A,B兩點的坐標分別為(x1,y1)和(x2,y2),則|y2-y1|的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知c是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的半焦距,則
b+c
a
的取值范圍是( 。
A.(1,+∞)B.(
2
,+∞)
C.(1,
2
D.(1,
2
]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)F1、F2是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,P為直線x=-
3
2
a
上一點,△F1PF2是底角為30°的等腰三角形,則E的離心率為(  )
A.
1
2
B.
2
3
C.
3
4
D.
4
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓
x2
2
+
y2
m
=1
的離心率為
1
2
,則實數(shù)m等于( 。
A.
3
2
B.
3
8
C.
3
2
8
3
D.
3
8
2
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F1、F2是橢圓
x2
9
+
y2
7
=1
的兩個焦點,A為橢圓上一點,且∠F1AF2=60°,則△F1AF2的面積為( 。
A.
7
3
3
B.
7
2
C.
7
4
D.
7
5
2

查看答案和解析>>

同步練習冊答案