設(shè)f(x)=f(x)dx.

答案:
解析:

  解析:f(x)dx=x2dx+(cosx-1)dx

  =x3+(sinx-x)=sin1


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(選修2-2) 2009-2010學(xué)年 第31期 總第187期 北師大課標(biāo) 題型:044

設(shè)f(x)為可導(dǎo)函數(shù),且滿(mǎn)足=-1,問(wèn)曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率是否存在?若存在,求f(x)在該點(diǎn)的切線斜率;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)文科(遼寧卷) 題型:044

設(shè)f(x)ex(ax2x1),且曲線yf(x)x1處的切線與x軸平行.

(1)a的值,并討論f(x)的單調(diào)性;

(2)證明:當(dāng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省杭州市2010屆高三科目教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理科試題 題型:044

設(shè)f(x)=λ1(x2+x)+λ2x·3x(a,b∈R,a>0)

(1)當(dāng)λ1=1,λ2=0時(shí),設(shè)x1,x2f(x)的兩個(gè)極值點(diǎn),

①如果x1<1<x2<2,求證:(-1)>3;

②如果a≥2,且x2-x1=2且x∈(x1,x2)時(shí),函數(shù)g(x)=(x)+2(xx2)的最小值為h(a),求h(a)的最大值.

(2)當(dāng)λ1=0,λ2=1時(shí),

①求函數(shù)yf(x)-3(ln3+1)x的最小值.

②對(duì)于任意的實(shí)數(shù)a,b,c,當(dāng)abc=3時(shí),求證3aa+3bb+3cc≥9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、數(shù)學(xué)(江蘇卷) 題型:044

設(shè)f(x)使定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為.如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得(x)=h(x)(x2-ax+1),則稱(chēng)函數(shù)f(x)具有性質(zhì)P(a).

(1)設(shè)函數(shù)f(x)=h(x)+(x>1),其中b為實(shí)數(shù)

①求證:函數(shù)f(x)具有性質(zhì)P(b)

②求函數(shù)f(x)的單調(diào)區(qū)間

(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案