如圖所示,在墻上掛著一塊邊長為16 cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2 cm、4 cm、6 cm,某人站在3 m之外向此板投鏢.設投鏢擊中線上或沒有投中木板時都不算,可重投,問:

(1)投中大圓內(nèi)的概率是多少?

(2)投中小圓與中圓形成的圓環(huán)的概率是多少?

(3)投中大圓之外的概率是多少?

解析:整個正方形木板的面積,即基本事件所占的區(qū)域總面積μΩ=16×16=256 cm2.

記“投中大圓內(nèi)”為事件A,“投中小圓與中圓形成的圓環(huán)”為事件B,“投中大圓之外”為事件C,則

    事件A所占區(qū)域面積為μA=π×62=36π cm2;

    事件B所占區(qū)域面積為μB=π×42-π×22=16π-4π=12π cm2

    事件C所占區(qū)域面積為μCΩA=(256-36π) cm2.

    由幾何概型的概率公式,得

(1)P(A)=π;

(2)P(B)=π;

(3)P(C)=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:044

如圖所示,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2cm、4cm、6cm,某人站在3m之外向此板投鏢.設投鏢擊中線上或沒有投中木板時都不算,可重投,問:

(1)投中大圓內(nèi)的概率是多少?

(2)投中小圓與中圓形成的圓環(huán)的概率是多少?

(3)投中大圓之外的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

如圖所示,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2cm,4cm,6cm,某人站在3m之外向此板投鏢.設投鏢擊中線上或沒有投中木板時都不算,可重投,問:

(1)投中大圓內(nèi)的概率是多少?

(2)投中小圓與中圓形成的圓環(huán)的概率是多少?

(3)投中大圓之外的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

如圖所示,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2cm,4cm,6cm,某人站在3m之外向此板投鏢.設投鏢擊中線上或沒有投中木板時都不算,可重投,問:

(1)投中大圓內(nèi)的概率是多少?

(2)投中小圓與中圓形成的圓環(huán)的概率是多少?

(3)投中大圓之外的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

如圖所示,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2cm、4cm、6cm,某人站在3m之外向此板投鏢.設投鏢擊中線上或沒有投中木板時都不算,可重投,問:

(1)投中大圓內(nèi)的概率是多少?

(2)投中小圓與中圓形成的圓環(huán)的概率是多少?

(3)投中大圓之外的概率是多少?

查看答案和解析>>

同步練習冊答案