18.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別a,b,c.已知a=2,b=6,A=30°,則能滿足此條件的三角形的個(gè)數(shù)是0個(gè).

分析 由a與b的值和A的度數(shù),根據(jù)正弦定理求出sinB的值,即可得到結(jié)論.

解答 解:根據(jù)正弦定理得$\frac{2}{\frac{1}{2}}=\frac{6}{sinB}$,
化簡(jiǎn)得:sinB=$\frac{3}{2}$,無(wú)解,
則滿足條件的三角形有0個(gè).
故答案為0

點(diǎn)評(píng) 此題考查學(xué)生靈活運(yùn)用正弦定理化簡(jiǎn)求值,掌握正弦函數(shù)的圖象與性質(zhì),會(huì)根據(jù)三角函數(shù)值求對(duì)應(yīng)的角,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.寫(xiě)出命題:“若方程ax2-bx+c=0的兩根均大于0,則ac>0”的一個(gè)等價(jià)命題是若ac≤0,則方程a2-bx+c=0的兩根不全大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=-x3+ax2-x-1在R上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$B.$({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$C.$[{-\sqrt{3},\sqrt{3}}]$D.$({-\sqrt{3},\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,已知$a=\frac{{5\sqrt{3}}}{3},b=5\;,A={30°}$,則 B=600或1200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在(x-y)11的展開(kāi)式中,求:
(1)通項(xiàng)Tr+1;
(2)二項(xiàng)式系數(shù)最大的項(xiàng);
(3)項(xiàng)的系數(shù)絕對(duì)值最大的項(xiàng);
(4)項(xiàng)的系數(shù)最大的項(xiàng);
(5)項(xiàng)的系數(shù)最小的項(xiàng);
(6)二項(xiàng)式系數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象可看成是把函數(shù)y=sin2x的圖象做以下平移得到( 。
A.向右平移$\frac{π}{6}$B.向左平移 $\frac{π}{12}$C.向右平移 $\frac{π}{12}$D.向左平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是$\frac{\sqrt{2}}{2}$,點(diǎn)F是橢圓的左焦點(diǎn),點(diǎn)A為橢圓的右頂點(diǎn),點(diǎn)B為橢圓的上頂點(diǎn),且S△ABF=$\frac{\sqrt{2}+1}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l:x-2y-1=0交橢圓E于P,Q兩點(diǎn),求△FPQ的周長(zhǎng)和面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a,b,c成等比數(shù)列,則角B的最大值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|x-a|
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)x,使不等式f(x)+f(x+5)<m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案