已知集合M={x|1≤x≤8,x∈N},對于它的非空子集A,將A中的每個元素k,都乘以(-1)k再求和,(如A={1,3,6},可求和得到(-1)1•1+(-1)3•3+(-1)6•6=2),則對M的所有非空子集,這些和的總和是________.

512
分析:先求集合M,再求出它的非空子集A的個數(shù),在所有子集中,各個元素出現(xiàn)的次數(shù),即可解答.
解答:集合M={x|1≤x≤8,x∈N},M={1,2,3,4,5,6,7,8},對它的非空子集A共有255個,
其中1,2,3,4,5,6,7,8都出現(xiàn)了27
依題意得:27[(-1)1•1+(-1)2•2+(-1)3•3+(-1)4•4+(-1)5•5+(-1)6•6+(-1)7•7+(-1)8•8]=512
故答案為:512.
點評:本題考查計數(shù)原理,有理數(shù)指數(shù)冪的運算,統(tǒng)計知識,難度大.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合M={x|1≤x≤10,x∈N},對它的非空子集A,將A中每個元素k,都乘以(-1)k再求和(如A={1,3,6},可求得和為(-1)•1+(-1)3•3+(-1)6•6=2,則對M的所有非空子集,這些和的總和是
2560
2560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|1+x>0},N={x|y=lg(1-x)},則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|1+x>0},N={x|
1
x
<1},則M∩N
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|-1≤x≤1},N={y|y≥t},若M∩N=M,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|1<x<2},集合N={x|3<x<4}
(1)求?RN,M∩?RN.
(2)求A={a<x<a+2},若A∪?RN=R,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案