如果4sin
θ
2
+3cos
θ
2
=0,那么角θ的終邊所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:由4sin
θ
2
+3cos
θ
2
=0得tan
θ
2
,進(jìn)一步求出sinθ和cosθ,由它們的符號來判斷θ的終邊所在象限.
解答: 解:由4sin
θ
2
+3cos
θ
2
=0,得tan
θ
2
=-
3
4

∴sinθ=
2tan
θ
2
1+tan2
θ
2
<0,
cosθ=
1-tan2
θ
2
1+tan2
θ
2
>0.
∴θ的終邊所在象限是第四象限.
故選:D.
點(diǎn)評:三角函數(shù)值符號的確定,可以利用定義、利用三角函數(shù)的值的符號、利用象限、利用三角函數(shù)線、利用終邊相同等方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
-2+4i
1-i
,則z對應(yīng)的點(diǎn)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-2x)(x-2)≥0,則
2
x
+
x
4
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題“設(shè)a,b為實(shí)數(shù),則方程x2+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是( 。
A、方程x2+ax+b=0沒有實(shí)根
B、方程x2+ax+b=0至多有一個(gè)實(shí)根
C、方程x2+ax+b=0至多有兩個(gè)實(shí)根
D、方程x2+ax+b=0恰好有兩個(gè)實(shí)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的有
 
個(gè).
①存在反函數(shù)的函數(shù)一定是單調(diào)函數(shù);
②偶函數(shù)存在反函數(shù);
③奇函數(shù)必存在反函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
a
x+1
的反函數(shù)的圖象經(jīng)過點(diǎn)(
1
2
,1),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
4
+
y2
3
=1的左、右頂點(diǎn)分別為M、N,點(diǎn)P在C上,且直線PN的斜率為-
1
4
,則直線PM斜率為( 。
A、
1
3
B、3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線m、n、l,三個(gè)平面α、β、γ,下列四個(gè)命題中,正確的是( 。
A、
α⊥γ
β⊥γ
⇒α∥β
B、
m∥β
l⊥m
⇒l⊥β
C、
m∥γ
n∥γ
⇒m∥n
D、
m⊥γ
n⊥γ
⇒m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,高A1A=3,體積為24,則對角線A1C為
 

查看答案和解析>>

同步練習(xí)冊答案