4.已知等差數(shù)列{an}的首項a1=1,公差d≠0,且a2是a1與a4的等比中項,則d=( 。
A.1B.2C.3D.4

分析 由題意可得${{a}_{2}}^{2}={a}_{1}•{a}_{4}$,把a2、a4用含有d的代數(shù)式表示,求解關(guān)于d的方程得答案.

解答 解:由a2是a1與a4的等比中項,得
${{a}_{2}}^{2}={a}_{1}•{a}_{4}$,即$({a}_{1}+d)^{2}={a}_{1}({a}_{1}+3d)$,
又a1=1,
∴(d+1)2=3d+1,
又d≠0,解得:d=1.
故選:A.

點評 本題考查等差數(shù)列的通項公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.二次函數(shù)y=(x+1)2+2的頂點是(  )
A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.從P(2,3)向圓(x-1)2+(y-1)2=1引切線,則:①切點長為2,②兩切點之間距離為$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對于任意實數(shù)a、b∈[0,1],則a、b滿足a<b<$\sqrt{a}$的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{5}$C.$\frac{1}{6}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(3x+1)的值域是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a,b,c為三角形ABC三邊,a≠1,b<c,若logc+ba+logc-ba=2logc+balog c-ba,則三角形ABC的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則( 。
A.函數(shù)f(x)的最小正周期是2π
B.函數(shù)f(x)的圖象可由函數(shù)g(x)=2sin2x的圖象向右平移$\frac{π}{3}$個單位長度得到
C.函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{12}$對稱
D.函數(shù)f(x)在區(qū)間[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個幾何體的三視圖如圖所示(單位長度:cm),則此幾何體的表面積是24+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓x2+y2-2x+my-4=0上兩點M,N關(guān)于直線2x+y=0對稱,則圓的方程為( 。
A.(x-1)2+(y+2)2=3B.(x-1)2+(y+2)2=9C.(x-1)2+(y-2)2=4D.(x-1)2+(y-2)2=12

查看答案和解析>>

同步練習(xí)冊答案