設F1,F2是雙曲線C,-=1(a>0,b>0)的兩個焦點.若在C上存在一點P,使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為    .
+1
設點P在雙曲線右支上,
由題意,在Rt△F1PF2中,
|F1F2|=2c,∠PF1F2=30°,
得|PF2|=c,|PF1|=c,
根據(jù)雙曲線的定義:|PF1|-|PF2|="2a,("  -1)c=2a,
e===+1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的離心率等于2,且經過點M(-2,3),求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線C1:y=x2(p>0)的焦點與雙曲線C2:-y2=1的右焦點的連線交C1于第一象限的點M.若C1在點M處的切線平行于C2的一條漸近線,則p等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線2x2-y2=8的實軸長是(  )
A.2B.2C.4D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設雙曲線-=1(a>0)的漸近線方程為3x±2y=0,則a的值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

點A(x0,y0)在雙曲線-=1的右支上,若點A到右焦點的距離等于2x0,則x0=    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線y2=2px(p>0)的焦點F與雙曲線-=1的右焦點重合,拋物線的準線與x軸的交點為K,點A在拋物線上且|AK|=|AF|,則A點的橫坐標為(  )
A.2B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與兩圓x2+y2=1及x2+y2-8x+12=0都外切的圓的圓心在(  )
A.一個橢圓上B.雙曲線的一支上
C.一條拋物線上D.一個圓上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線-=1的右焦點為(3,0),則該雙曲線的離心率等于(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案