精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).
(1)如果A,B兩點(diǎn)的縱坐標(biāo)分別為
4
5
,
12
13
,求cosα和sinβ的值;
(2)在(1)的條件下,求cos(β-α)的值;
(3)已知點(diǎn)C(-1,
3
)
,求函數(shù)f(α)=
OA
OC
的值域.
分析:(1)根據(jù)三角函數(shù)的定義,利用單位圓,直接求出cosα和sinβ的值.
(2)由題意判斷α,β范圍,求出cosα=
3
5
,cosβ=-
5
13
.利用兩角差的余弦公式求解cos(β-α)的值.
(3)求出函數(shù)f(α)=
OA
OC
的表達(dá)式,f(α)=
OA
OC
=2sin(α-
π
6
)
,根據(jù)α的范圍,確定函數(shù)的值域.
解答:解:(1)根據(jù)三角函數(shù)的定義,得sinα=
4
5
,sinβ=
12
13

又α是銳角,所以,cosα=
3
5
.(4分)
(2)由(1)知,sinα=
4
5
,sinβ=
12
13

又α是銳角,β是鈍角,
所以cosα=
3
5
,cosβ=-
5
13

所以cos(β-α)=cosβcosα+sinβsinα=(-
5
13
3
5
+
12
13
×
4
5
=
33
65
.(9分)
(3)由題意可知,
OA
=(cosα,sinα)
,
OC
=(-1,
3
)

所以f(α)=
OA
OC
=
3
sinα-cosα=2sin(α-
π
6
)
,
因?yàn)?span id="ay4402c" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">0<α<
π
2
,所以-
π
6
<α-
π
6
π
3
,
所以函數(shù)f(α)=
OA
OC
的值域?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(-1,
3
).(13分)
點(diǎn)評:本題考查任意角的三角函數(shù)的定義,平面向量數(shù)量積的運(yùn)算,同角三角函數(shù)基本關(guān)系的運(yùn)用,兩角和與差的余弦函數(shù),考查計(jì)算能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點(diǎn)P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點(diǎn),且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實(shí)數(shù)對(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個邊長為a,中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個邊長為a、中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為(  )
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,一定長m的線段,其端點(diǎn)AB分別在x軸、y軸上滑動,設(shè)點(diǎn)M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案