cos(-2040°)的值為( 。
A、0
B、
1
2
C、
3
2
D、-
1
2
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:原式中的角度變形后,利用誘導(dǎo)公式化簡計算即可得到結(jié)果.
解答: 解:原式=cos2040°=cos(6×360°+120°)=cos120°=-cos60°=-
1
2

故選:D.
點評:此題考查了運用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,集合A={z|z=in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A}(z1≠z2),從集合B中任取一元素,則該元素為實數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非零向量
a
b
滿足|
a
|=2,|
b
|=2,且|
a
-2
b
|∈(2,2
3
),則
a
,
b
夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點P(-5,12),則sin(-π-α)-2cos(π-α)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+6y+5a=0關(guān)于直線y=x+2b成軸對稱圖形,則a-b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是以5為周期的奇函數(shù),f(-3)=1且tanα=2,則f(20sinαcosα)的值是(  )
A、1B、-1C、3D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:x-
3
y=0截圓C:(x-2)2+y2=4所得弦長為(  )
A、1
B、
3
C、2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于下列結(jié)論:
(1)平面內(nèi)到兩定點A(-2,0)和B(2,0)距離之和為4的點M的軌跡是橢圓;
(2)平面內(nèi)與一個定點A(1,3)和一條定直線l:2x+3y-11=0距離相等的點M的軌跡是拋物線;
(3)在平面直角坐標(biāo)系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表示的曲線為橢圓,則實數(shù)m的取值范圍是(
5
,+∞);
(4)若不等式ax2+bx+c>0的解集是{x|-4<x<1},則不等式b(x2-1)+a(x+3)+c>0的解集為{x|-
4
3
<x<1};
(5)已知數(shù)列{an}滿足a1=33,an+1-an=2n,則
an
n
的最小值為
21
2
. 
其中正確的是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-sin2x-3cosx+3的最小值是(  )
A、2
B、0
C、
1
4
D、6

查看答案和解析>>

同步練習(xí)冊答案