4.過點(diǎn)A(4,a)和B(5,b)的直線與y=x+m平行,則|AB|的值為$\sqrt{2}$.

分析 由兩點(diǎn)表示的斜率公式求出AB的斜率,再根據(jù)AB的斜率等于1,得到b-a=1,再代入兩點(diǎn)間的距離公式運(yùn)算.

解答 解:由題意,利用斜率公式求得kAB=$\frac{b-a}{5-4}$=1,即b-a=1,
所以,|AB|=$\sqrt{{(5-4)}^{2}{+(b-a)}^{2}}$=$\sqrt{2}$,
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查兩直線平行的性質(zhì),直線的斜率公式以及兩點(diǎn)間距離公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{lnx}{x+a}+b-1$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x-1.
(1)求a,b
(2)試比較20162017與20172016的大小,并說明理由.
(3)當(dāng)c<1時(shí),證明:對(duì)任意的x>0,有$\frac{(x+1)lnx}{x}-x+c-1<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)C是拋物線Γ:y=2x2上一點(diǎn),以C為圓心且與Γ的準(zhǔn)線相切的圓必過一個(gè)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是(0,$\frac{1}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求證:AB1⊥BC1;
(2)求二面角B-AB1-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若將直角梯形繞BC邊旋轉(zhuǎn)一周,則所得幾何體的表面積為(  )
A.3π+$\sqrt{2}$πB.3π+2$\sqrt{2}$πC.6π+2$\sqrt{2}$πD.6π+$\sqrt{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)分別求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值,并歸納猜想一般性結(jié)論,并給出證明;
(2)求值:f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=ln(2-x)+ax在區(qū)間(0,1)內(nèi)是增函數(shù),則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(m,1)$,則“m=1”是“$\overrightarrow a∥\overrightarrow b$”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.?dāng)?shù)列{an}滿足a1=2,${a_{n+1}}=a_n^2$(an>0),則an=( 。
A.10n-2B.10n-1C.${10^{{2^{n-1}}}}$D.${2^{{2^{n-1}}}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案