已知a>0,b>0且a+b>2,求證:
1+b
a
,
1+a
b
中至少有一個(gè)小于2.
分析:本題證明結(jié)論中結(jié)構(gòu)較復(fù)雜,而其否定結(jié)構(gòu)簡(jiǎn)單,故可用反證法證明其否定不成立,即證明
1+b
a
,
1+a
b
不可能都不小于2,假設(shè)
1+b
a
,
1+a
b
都不小于2,則
1+b
a
≥2,
1+a
b
≥2
得出2≥a+b,這與已知a+b>2相矛盾,故假設(shè)不成立,以此來證明結(jié)論成立.
解答:證明:假設(shè)
1+b
a
,
1+a
b
都不小于2,則
1+b
a
≥2,
1+a
b
≥2
(6分)
因?yàn)閍>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)
即2≥a+b,這與已知a+b>2
相矛盾,故假設(shè)不成立(12分)
綜上
1+b
a
,
1+a
b
中至少有一個(gè)小于2.(14分)
點(diǎn)評(píng):反證法是一種簡(jiǎn)明實(shí)用的數(shù)學(xué)證題方法,也是一種重要的數(shù)學(xué)思想.相對(duì)于直接證明來講,反證法是一種間接證法.它是數(shù)學(xué)學(xué)習(xí)中一種很重要的證題方法.其實(shí)質(zhì)是運(yùn)用“正難則反”的策略,從否定結(jié)論出發(fā),通過邏輯推理,導(dǎo)出矛盾.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0且
1
a
+
3
b
=1
,則a+2b的最小值為( 。
A、7+2
6
B、2
3
C、7+2
3
D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0且
1
a
+
1
b
=1
,
(1)求ab最小值;
(2)求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•資陽一模)已知a>0,b>0且ab=1,則函數(shù)f(x)=ax與函數(shù)g(x)=-logbx的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0且h=
a
b
a2+b2
,(a≤
b
a2+b2
)
,(a>
b
a2+b2
)
則h的最大值等于
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且對(duì)任意的正整數(shù)k,當(dāng)ak+bk≥0時(shí),ak+1=
1
2
ak-
1
4
bk
bk+1=
3
4
bk
;當(dāng)ak+bk<0時(shí),bk+1=-
1
4
ak+
1
2
bk
,ak+1=
3
4
ak

(1)求數(shù)列{an+bn}的通項(xiàng)公式;
(2)若對(duì)任意的正整數(shù)n,an+bn<0恒成立,問是否存在a,b使得{bn}為等比數(shù)列?若存在,求出a,b滿足的條件;若不存在,說明理由;
(3)若對(duì)任意的正整數(shù)n,an+bn<0,且b2n=
3
4
b2n+1
,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案