2.等比數(shù)列{an}中,a1+a4=20,a2+a5=40,求它的前6項(xiàng)和s6

分析 利用等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
∵a1+a4=20,a2+a5=40,∴q(a1+a4)=20q=40,解得q=2,
${a}_{1}+{a}_{1}×{2}^{3}$=20,解得a1=$\frac{20}{9}$.
∴S6=$\frac{\frac{20}{9}×({2}^{6}-1)}{2-1}$=140.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對稱.
(1)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求實(shí)數(shù)m的最大值和最小值
(2)若當(dāng)x∈[0,$\frac{11π}{12}$]時(shí)不等式f(x)+ag(-x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知正△ABC內(nèi)一點(diǎn)D,滿足∠ADC=150°.證明:由線段AD、BD、CD為邊構(gòu)成的三角形是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是②④(寫出所有正確命題的編號(hào)).
①當(dāng)0<CQ<$\frac{1}{2}$時(shí),S為平行四邊形;
②當(dāng)CQ=$\frac{1}{2}$時(shí),S為等腰梯形;
③當(dāng)CQ=$\frac{3}{4}$時(shí),S與C1D1的交點(diǎn)R滿足C1R=$\frac{1}{4}$
④當(dāng)CQ=1時(shí),S的面積為$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=$\frac{1}{x-1}$+lg(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.曲線f(x)=x3+$\sqrt{x}$在點(diǎn)(1,2)處的切線方程為( 。
A.4x-y-2=0B.7x-2y-3=0C.3x-y-1=0D.5x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(2$\sqrt{3}$cosωx+sinωx)sinωx-sin2($\frac{π}{2}$+ωx)(ω>0),且函數(shù)y=f(x)的圖象的一個(gè)對稱中心到最近的對稱軸的距離為$\frac{π}{4}$.
(Ⅰ)求ω的值和函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 求函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且對任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,已知f(4)=5.
(Ⅰ)求f(2)的值;
(Ⅱ)解不等式f(m-2)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)
(1)若b=2a,a<0寫出函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若a=1,c=2,若存在實(shí)數(shù)b使得函數(shù)f(x)在區(qū)間(0,2)內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案