16.用反證法證明命題“若abc=0,則a,b,c中至少有一個為0”時,假設(shè)正確的是( 。
A.假設(shè)a,b,c都不為0B.假設(shè)a,b,c不都為0
C.假設(shè)a,b,c至多有一個為0D.假設(shè)a,b,c都為0

分析 反證法的步驟中,第一步是假設(shè)結(jié)論不成立,反面成立,可據(jù)此進(jìn)行解答

解答 解:用反證法證明命題“若abc=0,則a,b,c中至少有一個為0”時,
假設(shè)正確的是:假設(shè)a,b,c都不為0.
故選:A

點評 本題考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.
(1)若a=2$\sqrt{3}$,A=$\frac{π}{3}$,且△ABC的面積S=2$\sqrt{3}$,求b,c的值;
(2)若sin(C-B)=sin2B-sinA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,定圓C半徑為2,A為圓C上的一個定點,B為圓C上的動點,若點A,B,C不共線,且|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|$≥|\overrightarrow{BC}$|對任意t∈(0,+∞)恒成立,則 $\overrightarrow{AB}$$•\overrightarrow{AC}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.用反證法證明”若x,y都是正實數(shù),且x+y>2,則$\frac{1+x}{y}$<2或$\frac{1+y}{x}$<2中至少有一個成立“的第一步應(yīng)假設(shè)( 。
A.$\frac{1+x}{y}$≥2且$\frac{1+y}{x}$≥2B.$\frac{1+x}{y}$≥2或$\frac{1+y}{x}$≥2C.$\frac{1+x}{y}$≥2且$\frac{1+y}{x}$<2D.$\frac{1+x}{y}$≥2或$\frac{1+y}{x}$<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(Ⅰ)用1到9這九個數(shù)字,可以組成多少個沒有重復(fù)數(shù)字的三位數(shù)?
(Ⅱ)用1到9這九個數(shù)字,可以組成多少個沒有重復(fù)數(shù)字的兩位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知i是虛數(shù)單位,且(1+2i)$\overline{z}$=3+i.
(1)求z;
(2)若z是關(guān)于x的方程x2+px+q=0的一個根,求實數(shù)p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)四個不同球放入編號為1,2,3,4的四個盒中,則恰有一個空盒的放法有多少種?
(2)設(shè)有編號為1,2,3,4,5的五個球和編號為1,2,3,4,5的盒子現(xiàn)將這5個球投入5個盒子要求每個盒子放一個球,并且恰好有兩個球的號碼與盒子號碼相同,問有多少種不同的方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等差數(shù)列{an}的前n項和為Sn,且S10=100,S100=10,則S110=-110.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“λ<1”是“數(shù)列an=n2-2λn為遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案