精英家教網(wǎng)如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD•BC;類似地有命題:在三棱錐A-BCD中,AD⊥面ABC,若A點(diǎn)在BCD內(nèi)的射影為M,則有
S
2
△ABC
=S△BCMS△BCD
.上述命題是( 。
分析:連接AE,證明AM⊥DE,AD⊥AE,由射影定理可得AE2=EM•ED,再結(jié)合三角形的面積公式可得結(jié)論.
解答:解:連接AE,則
因?yàn)锳D⊥面ABC,AE?面ABC,
所以AD⊥AE.
又AM⊥DE,
所以由射影定理可得AE2=EM•ED.
于是S△ABC2=(
1
2
BC•AM)2=
1
2
BC•EM•
1
2
BC•MD
=S△BCM•S△BCD
故有S△ABC2=S△BCM•S△BCD
所以命題是一個(gè)真命題.
故選A.
點(diǎn)評(píng):本題考查類比推理及利用平面的性質(zhì)證明空間的結(jié)論,考查空間想象能力,證明AE2=EO•ED是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
,
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案