(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點A,B;O為坐標原點。
(1)若,試探究在曲線C上僅存在幾個點到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。
(1)在曲線C上存在3個點到直線L的距離恰為(2)
【解析】
試題分析:(1)在曲線C上存在3個點到直線L的距離恰為。
設,由得,
2分
又點A,B在直線L上,得,,代入上式化簡得
4分
由
由 6分
所以,于是,這時曲線C表示圓
,O到直線L的距離d=,即有3個點 8分
(2)因為a>b,所以曲線C為焦點在x軸上的橢圓
由,所以,
又,, 9分
由(1)得,,代入上式整理得
,
可得
而
12分
考點:直線與橢圓相交,直線與圓相交的弦長距離問題及橢圓離心率范圍的求解
點評:第一問由直線與圓錐曲線相交首先利用韋達定理確定了曲線的特點(為圓)進而轉化為求圓上的點到直線的距離,第二問求離心率范圍,將離心率求解函數式用已知中的變量a表示,轉換為求函數值域
科目:高中數學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com