精英家教網 > 高中數學 > 題目詳情
零向量
a
b
滿足|
a
|=2,|
b
|=2,且|
a
-2
b
|=2,則
a
b
夾角是
 
考點:平面向量數量積的運算
專題:平面向量及應用
分析:首先,根據|
a
-2
b
|=2,兩邊平方,得到
a
2
-4
a
b
+4
b
2
=4
,將給定的條件代入,即可得到結果.
解答: 解:∵|
a
-2
b
|=2,
∴(
a
-2
b
2=4,
a
2
-4
a
b
+4
b
2
=4
,
∴4+4-8cosθ=4,
∴cosθ=
1
2
,
∵θ∈[0,π],
∴θ=
π
3

故答案為:
π
3
點評:本題重點考查了平面向量的數量積的運算性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=alnx-4x,g(x)=-x2-3.
(Ⅰ)求函數f(x)在x=1處的切線方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)=
a-2x
2x+1
是奇函數.
(1)求a的值;
(2)用定義證明f(x)在(-∞,+∞)上為減函數.
(3)若對于任意t∈R,不等式f(t2-2t)+f(k-2t2)>0恒成立,求k的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

在菱形ABCD中,對角線AC=4,E為CD的中點,
.
AE
.
AC
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,點A1在底面ABC的投影是線段BC的中點O.
(1)證明在側棱AA1上存在一點E,使得OE⊥平面BB1C1C,并求出AE的長;
(2)求平面A1B1C與平面BB1C1C夾角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=|x+1|+|x+2|+…+|x+2014|+|x-1|+|x-2|+…+|x-2014|,(x∈R),下列四個命題中真命題的序號是
 

(1)f(x)是偶函數;              
(2)不等式f(x)<2013×2014的解集為∅;
(3)f(x)在(0,+∞)上是增函數;   
(4)方程f(a2-5a+6)=f(a-2)有無數個實根.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖是計算1+
1
3
+…+
1
19
的值的一個流程圖,則常數a的最大值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知對任意平面向量
AB
=(x,y),把
AB
繞其起點沿逆時針方向旋轉θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點B繞點A逆時針旋轉θ角得到點P.設平面曲線C上的每一點繞坐標原點沿逆時針方向旋轉
π
4
后得到的點的軌跡是曲線x2-y2=3,則原來的曲線C的方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

抽樣統計甲,乙兩個城市連續(xù)5天的空氣質量指數(AQI),數據如下:
城市 空氣質量指數(AQI)
第1天 第2天 第3天 第4天 第5天
109 111 132 118 110
110 111 115 132 112
則空氣質量指數(AQI)較為穩(wěn)定(方差較小)的城市為
 
(填甲或乙).

查看答案和解析>>

同步練習冊答案