已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)F與橢圓數(shù)學(xué)公式(a>b>0)的一個(gè)焦點(diǎn)重合,它們?cè)诘谝幌笙迌?nèi)的交點(diǎn)為T(mén),且TF與x軸垂直,則橢圓的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式-1
D
分析:先確定T的坐標(biāo),再代入橢圓方程,即可確定橢圓的離心率.
解答:由題意,設(shè)F(c,0),則,代入拋物線(xiàn)方程可得y=±2c
∴T(c,2c)
代入橢圓可得
∴(a2-c2)c2+4a2c2=a2(a2-c2
∴e4-6e2+1=0
∴e2=3±2
∵0<e<1
∴e=-1
故選D.
點(diǎn)評(píng):本題考查橢圓與拋物線(xiàn)的綜合,考查橢圓的幾何性質(zhì),解題的關(guān)鍵是確定T的坐標(biāo),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線(xiàn)l與該拋物線(xiàn)交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線(xiàn)段AB的垂直平分線(xiàn)交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l.
(1)求拋物線(xiàn)上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過(guò)點(diǎn)F作一直線(xiàn)與拋物線(xiàn)相交于A,B兩點(diǎn),并在準(zhǔn)線(xiàn)l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線(xiàn)MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線(xiàn)l與該拋物線(xiàn)交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•聊城一模)已知拋物線(xiàn)y2=2px(p>0),過(guò)點(diǎn)M(2p,0)的直線(xiàn)與拋物線(xiàn)相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0),M(2p,0),A、B是拋物線(xiàn)上的兩點(diǎn).求證:直線(xiàn)AB經(jīng)過(guò)點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案