若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點。已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點。
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點;
(3)設(shè)h(x)=f(f(x))-c,其中c∈[-2,2],求函數(shù)y=h(x)的零點個數(shù)。
解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b
∵1和-1是函數(shù)f(x)的兩個極值點,
∴f′(1)=3-2a+b=0,f′(-1)=3+2a+b=0,解得a=0,b=-3。
(2)由(1)得,f(x)=x3-3x,
∴g′(x)=f(x)+2=x3-3x+2=(x-1)2(x+2)=0,
解得x1=x2=1,x3=-2
∵當(dāng)x<-2時,g′(x)<0;
當(dāng)-2<x<1時,g′(x)>0,
∴-2是g(x)的極值點
∵當(dāng)-2<x<1或x>1時,g′(x)>0,
∴1不是g(x) 的極值點
∴g(x)的極值點是-2。
(3)令f(x)=t,則h(x)=f(t)-c
先討論關(guān)于x的方程f(x)=d根的情況,d∈[-2,2]
當(dāng)|d|=2時,由(2 )可知,f(x)=-2的兩個不同的根為1和-2,
注意到f(x)是奇函數(shù),
∴f(x)=2的兩個不同的根為-1和2
當(dāng)|d|<2時,∵f(-1)-d=f(2)-d=2-d>0,f(1)-d=f(-2)-d=-2-d<0,
∴-2,-1,1,2 都不是f(x)=d 的根
由(1)知,f′(x)=3(x+1)(x-1)
①當(dāng)x∈(2,+∞)時,f′(x)>0,于是f(x)是單調(diào)增函數(shù),
從而f(x)>f(2)=2
此時f(x)=d在(2,+∞)無實根
②當(dāng)x∈(1,2)時,f′(x)>0,于是f(x)是單調(diào)增函數(shù)
又∵f(1)-d<0,f(2)-d>0,y=f(x)-d的圖象不間斷,
∴f(x)=d在(1,2 )內(nèi)有唯一實根
同理,在(-2,-I1)內(nèi)有唯一實根
③當(dāng)x∈(-1,1)時,f′(x)<0,于是f(x)是單調(diào)減函數(shù)
又∵f(1)-d>0,f(2)-d<0,y=f(x)-d的圖象不間斷,
∴f(x)=d在(-1,1 )內(nèi)有唯一實根
因此,當(dāng)|d|=2 時,f(x)=d 有兩個不同的根 x1,x2,滿足|x1|=1,|x2|=2;
當(dāng)|d|<2時,f(x)=d 有三個不同的根x3,x4,x5,滿足|xi|<2,i=3,4,5
現(xiàn)考慮函數(shù)y=h(x)的零點:
( i )當(dāng)|c|=2時,f(t)=c有兩個根t1,t2,滿足|t1|=1,|t2|=2
而f(x)=t1有三個不同的根,f(x)=t2有兩個不同的根,
故y=h(x)有5 個零點。
( i i  )當(dāng)|c|<2時,f(t)=c有三個不同的根t3,t4,t5,滿足|ti|<2,i=3,4,5
而f(x)=ti有三個不同的根,故y=h(x)有9個零點
綜上所述,當(dāng)|c|=2時,函數(shù)y=h(x)有5個零點;
當(dāng)|c|<2時,函數(shù)y=h(x)有9 個零點。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知變量t,y滿足關(guān)系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,變量t,x滿足關(guān)系式t=ax,變量y,x滿足函數(shù)關(guān)系式y(tǒng)=f(x).
(1)求函數(shù)y=f(x)表達(dá)式;
(2)若函數(shù)y=f(x)在[2a,3a]上具有單調(diào)性,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)在[em,+∞)(m∈Z)上有零點,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+2ax-3a.
(Ⅰ)若函數(shù)y=f(x)在(-∞,1)上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)函數(shù)f(x)在[1,2]上的最大值為4時,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x)=x2-2ax+3
(1)求函數(shù)y=f(x)的解析式
(2)若函數(shù)y=f(x)在[
12
,8]上的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在(0,+∞)上的導(dǎo)函數(shù)為f′(x),且不等式xf′(x)>f(x)恒成立,又常數(shù)a,b滿足a>b>0,則下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步練習(xí)冊答案