已知向量數(shù)學(xué)公式,數(shù)學(xué)公式
(1)已知C(3,4),求D點(diǎn)坐標(biāo).
(2)若數(shù)學(xué)公式,求tanθ的值.

解:(1)設(shè)D(x,y)則
,∴,
∴D(4,6)(5分)
(2)∵∴2sinθ=cosθ-2sinθ,
∴4sinθ=cosθ,
(10分)
分析:(1)本題中知道向量及C(3,4),根據(jù)向量坐標(biāo)與起點(diǎn)終點(diǎn)坐標(biāo)之間的公式建立方程求解即可.
(2)本題中給出了向量共線的條件,故要先根據(jù)共線的條件建立關(guān)于θ的三角恒等式,再進(jìn)行恒等變形,求出其三角函數(shù)值.
點(diǎn)評(píng):本題考點(diǎn)是平面向量共線與其坐標(biāo)表示,考查了向量坐標(biāo)表示以及向量共線的坐標(biāo)表示.屬于向量基礎(chǔ)知識(shí)應(yīng)用題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知向量
a
、
b
的模都是2,其夾角為60°,當(dāng)
OP
=
10
a
+2
b
,
OQ
=-2
a
+
10
b
時(shí),求P,Q兩點(diǎn)間的距離;
(2)設(shè)向量
a
b
的長(zhǎng)度分別為4和3,夾角為60°,求|
a
+
b
|的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知
a
=(1,2),
b
=(x,1),
u
=
a
+2
b
,
v
=2
a
-
b
,且
u
v
,求實(shí)數(shù)x;
(2)已知向量
a
=(m,1)
b
=(2,m)
的夾角為鈍角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分
(1)已知矩陣M=
12
21
,β=
1
7
,(Ⅰ)求M-1;(Ⅱ)求矩陣M的特征值和對(duì)應(yīng)的特征向量;(Ⅲ)計(jì)算M100β.
(2)曲線C的極坐標(biāo)方程是ρ=1+cosθ,點(diǎn)A的極坐標(biāo)是(2,0),求曲線C在它所在的平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)一周而形成的圖形的周長(zhǎng).
(3)已知a>0,求證:
a2+
1
a2
-
2
≥a+
1
a
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)閇a,b]的函數(shù)y=f(x)圖象上兩點(diǎn)A(a,f(a)),B(b,f(b)),M(x,y)是y=f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b,λ∈[0,1].已知向量
.
ON
=λ
.
OA
+(1-λ)
.
OB
,若不等式|MN|≤k對(duì)任意λ∈[0,1]恒成立,則稱(chēng)函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x-
1
x
在[1,3]上“k階線性近似”,則實(shí)數(shù)的k取值范圍為( 。
A、[0,+∞)
B、[
1
12
,+∞)
C、[
4
3
-
2
3
3
,+∞)
D、[
4
3
+
2
3
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省內(nèi)江市高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

先閱讀第(1)題的解法,再解決第(2)題:
(1)已知向量,求x2+y2的最小值.
解:由,當(dāng)時(shí)取等號(hào),
所以x2+y2的最小值為
(2)已知實(shí)數(shù)x,y,z滿足2x+3y+z=1,則x2+y2+z2的最小值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案