若不等式組
x2-4x≤0
-1≤y≤2
x-y-1≥0
表示的平面區(qū)域為M,(x-4)2+y2≤1表示的平面區(qū)域為N,現(xiàn)隨機向區(qū)域M內(nèi)拋一點,則該點落在平面區(qū)域N內(nèi)的概率是
 
分析:由題意知本題是一個幾何概型,試驗包含的所有事件是隨機向區(qū)域M內(nèi)拋一點,它所對應(yīng)的圖形可以作圖,做出面積是
1
2
×(1+4)×3
而滿足條件的事件是點落在平面區(qū)域N內(nèi),對應(yīng)的面積是
1
2
π×12
,得到結(jié)果.
解答:精英家教網(wǎng)解:由題意知本題是一個幾何概型
試驗包含的所有事件是隨機向區(qū)域M內(nèi)拋一點,它所對應(yīng)的圖形如圖所示:
面積是
1
2
×(1+4)×3
=
15
2
,
而滿足條件的事件是點落在平面區(qū)域N內(nèi),
對應(yīng)的面積是
1
2
π×12
,
根據(jù)幾何概型概率公式得到P=
1
2
π
15
2
=
π
15

故答案為:
π
15
點評:古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,解題過程中不能列舉的就是幾何概型,幾何概型的概率的值是通過長度、面積、和體積、的比值得到.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x2-2x-3≤0
x2+4x-(1+a)≤0
的解集不是空集,則實數(shù)a的取值范圍是( 。
A、(-∞,-4]
B、[-4,+∞)
C、[-4,20]
D、[-4,20)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè)f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點坐標(biāo)為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省常州市武進區(qū)前黃高級中學(xué)高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè),生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
(3)設(shè),取a>0,b>0生成函數(shù)h(x)圖象的最低點坐標(biāo)為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè),生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
(3)設(shè),取a>0,b>0生成函數(shù)h(x)圖象的最低點坐標(biāo)為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案