【題目】已知函數(shù).
(1)若函數(shù)在時取得極值,求實數(shù)的值;
(2)若對任意恒成立,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】試題分析:(1)由 ,依題意有: ,即 ,通過檢驗滿足在 時取得極值. (2)依題意有: 從而 ,令,得:,,通過討論① 和②,進而求出 的取值范圍.
試題解析:
(1),
依題意有,即,解得.
檢驗:當時,.
此時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,滿足在時取得極值.
綜上可知.
(2)依題意可得:對任意恒成立等價轉化為在上恒成立.
因為,
令得:,.
①當,即時,函數(shù)在上恒成立,則在上單調(diào)遞增,
于是,解得,此時;
②當,即時,時,;時,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
于是,不合題意,此時.
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】隨機詢問某大學40名不同性別的大學生在購買食物時是否讀營養(yǎng)說明,得到如下列聯(lián)表:
性別與讀營養(yǎng)說明列聯(lián)表:
男 | 女 | 總計 | |
讀營養(yǎng)說明 | 16 | 8 | 24 |
不讀營養(yǎng)說明 | 4 | 12 | 16 |
總計 | 20 | 20 | 40 |
(Ⅰ)根據(jù)以上列聯(lián)表進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為性別與是否讀營養(yǎng)說明之間有關系?
(Ⅱ)從被詢問的16名不讀營養(yǎng)說明的大學生中,隨機抽取2名學生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學期望).
(注:,其中為樣本容量.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正三棱柱(側棱垂直于底面,且底面是正三角形)中,是棱上一點.
(1)若分別是的中點,求證:平面;
(2)若是上靠近點的一個三等分點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,,是6與的等差中項.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)當,時,求函數(shù)的單調(diào)區(qū)間;
(2)當時,若對任意恒成立,求實數(shù)的取值范圍;
(3)設函數(shù)的圖象在兩點,處的切線分別為,,若,,且,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明當時,關于的不等式恒成立;
(3)若正實數(shù)滿足,證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)和.
(1)若函數(shù)在區(qū)間不單調(diào),求實數(shù)的取值范圍;
(2)當時,不等式恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,,短軸的兩個端點分別為,.
(1)若為等邊三角形,求橢圓的方程;
(2)若橢圓的短軸長為2,過點的直線與橢圓相交于、兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com