(如圖)直線l1l2相交于點M,l1l2,點N∈l1,以A,B為端點的曲線段C上的任一點到l2的距離與到點N的距離相等,若AMN為銳角三角形,|AM|,|AN|3,且|BN|6,建立適當?shù)淖鴺讼。求曲線C的方程。

 

答案:
解析:

如圖所示建立坐標系,以l1x軸,MN的垂直平分線為y,軸,點O為坐標原點。

    依題意知:曲線段C是以點N為焦點,以l2為準線的拋物線的一段,其中AB分別為C的端點。

    設(shè)曲線段C的方程為

    y2=2px(p>0),(xAxxB,y>0)。

    其中xA,xB分別為A,B的橫坐標,p=|MN|

    所以

    由|AM|=,|AN|=3得

                          ①

                          ②

 

 

    由①、②兩式聯(lián)立解得,再將其代入①式并由P>0解得

    因為△AMN是銳角三角形,所以

    ∴,由點B在曲線段C上,得,

    綜上得曲線段C的方程為x≤4,y>0)。

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,平面中兩條直線l1和l 2相交于點O,對于平面上任意一點M,若x,y分別是M到直線l 1和l 2的距離,則稱有序非負實數(shù)對(x,y)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標”為(0,0)的點有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標”為( p,q) 的點有且只有2個;
③若pq≠0則“距離坐標”為 ( p,q) 的點有且只有3個.
上述命題中,正確的有
①②
①②
.(填上所有正確結(jié)論對應(yīng)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直線l1和l2相交于點M且l1⊥l2,點N∈l1.以A、B為端點的曲線段C上的任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲線段C是哪類圓錐曲線的一部分?并建立適當?shù)淖鴺讼,求曲線段C所在的圓錐曲線的標準方程;
(2)在(1)所建的坐標系下,已知點P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,平面中兩條直線l1和l 2相交于點O,對于平面上任意一點M,若x,y分別是M到直線l 1和l 2的距離,則稱有序非負實數(shù)對(x,y)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標”為(0,0)的點有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標”為( p,q) 的點有且只有2個;
③若pq≠0則“距離坐標”為 ( p,q) 的點有且只有3個.
上述命題中,正確的有______.(填上所有正確結(jié)論對應(yīng)的序號)
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面中兩條直線l1和l 2相交于點O,對于平面上任意一點M,若x,y分別是M到直線l 1和l 2的距離,則稱有序非負實數(shù)對(x,y)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標”為(0,0)的點有且只有1個;

②若pq=0,且p+q≠0,則“距離坐標”為( p,q) 的點有且只有2個;

③若pq≠0則“距離坐標”為 ( p,q) 的點有且只有3個.

上述命題中,正確的有、佗凇.(填上所有正確結(jié)論對應(yīng)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省廈門六中高一(下)期中數(shù)學試卷(解析版) 題型:填空題

如圖,平面中兩條直線l1和l 2相交于點O,對于平面上任意一點M,若x,y分別是M到直線l 1和l 2的距離,則稱有序非負實數(shù)對(x,y)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標”為(0,0)的點有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標”為( p,q) 的點有且只有2個;
③若pq≠0則“距離坐標”為 ( p,q) 的點有且只有3個.
上述命題中,正確的有    .(填上所有正確結(jié)論對應(yīng)的序號)

查看答案和解析>>

同步練習冊答案