如果雙曲線的兩個(gè)焦點(diǎn)分別為F1(-3,0),F(xiàn)2(3,0),一條漸近線方程為:y=
2
x

(1)求該雙曲線的方程;
(2)過(guò)焦點(diǎn)F2,傾斜角為
π
3
的直線與該雙曲線交于A,B兩點(diǎn),求|AB|.
分析:(1)依題意設(shè)出雙曲線方程,根據(jù)焦點(diǎn)坐標(biāo)求得c,根據(jù)漸近線方程求得a和b的關(guān)系,進(jìn)而根據(jù)a,b和c的關(guān)系求得a和b,則雙曲線方程可得.
(2)根據(jù)直線的傾斜角可知直線的斜率,根據(jù)點(diǎn)F2進(jìn)而可得直線AB的方程,設(shè)A,B的坐標(biāo),把直線方程與雙曲線方程聯(lián)立消去y,根據(jù)韋達(dá)定理求得x1+x2和x1x2的值,進(jìn)而根據(jù)弦長(zhǎng)公式求得AB的長(zhǎng).
解答:解:(1)依題意:設(shè)該雙曲線的方程為:
x2
a2
-
y2
b2
=1

則:
b
a
=
2
c=3
,?
a2=3
b2=6
x2
3
-
y2
6
=1為所求

(2)由題意知直線AB的方程為y=
3
(x-3)

設(shè)A(x1,y1),B(x2,y2
y=
3
(x-3)
x2
3
-
y2
6
=1
x2-18x+33=0

∴x1+x2=18,x1x2=33
|AB|=
[1+(
3
)2[(x1+x2)2-4x1x2]

=
4(182-4•33)
=16
3
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問(wèn)題.直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長(zhǎng)問(wèn)題、最值問(wèn)題、對(duì)稱(chēng)問(wèn)題、軌跡問(wèn)題等.突出考查了數(shù)形結(jié)合、分類(lèi)討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果雙曲線的兩個(gè)焦點(diǎn)分別為F1(-3,0)、F2(3,0),一條漸近線方程為y=
2
x
,那么它的兩條準(zhǔn)線間的距離是( 。
A、6
3
B、4
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果雙曲線的兩個(gè)焦點(diǎn)分別為F1(-3,0),F(xiàn)2(3,0),一條漸近線方程為y=
2
x
,則該雙曲線的方程為
x2
3
-
y2
6
=1
x2
3
-
y2
6
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果雙曲線的兩個(gè)焦點(diǎn)分別為F1(0,3)和F2(0,3),其中一條漸近線的方程是y=
2
2
x
,則雙曲線的實(shí)軸長(zhǎng)為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果雙曲線的兩個(gè)焦點(diǎn)分別為F1(-3,0)、F2(3,0),一條漸近線方程為y=x,那么它的兩條準(zhǔn)線間的距離是(  )

A.                        B.4                              C.2                              D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案