【題目】

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)(,),直線l的極坐標(biāo)方程為ρcos(θ)=a,.

(1)若點(diǎn)A在直線l上,求直線l的直角坐標(biāo)方程;

(2)C的參數(shù)方程為(為參數(shù)),若直線與圓C相交的弦長為,求的值。

【答案】(1) (2)

【解析】

試題(1)通過點(diǎn)A在直線l上,列出方程得到,然后求解直線l的直角坐標(biāo)方程(2)消去參數(shù),求出的普通方程,通過圓心到直線的距離半徑半弦長的關(guān)系,即可求的值.

試題解析(1)由點(diǎn)在直線上,可得=

所以直線的方程可化為

從而直線的直角坐標(biāo)方程為.

(2)由已知得圓C的直角坐標(biāo)方程為

所以圓C的圓心為(2,0),半徑,

而直線的直角坐標(biāo)方程為,若直線與圓C相交的弦長為

則圓心到直線的距離為,所以

求得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)面與側(cè)面均為邊長為2的等邊三角形,中點(diǎn).

(1)證明:平面;

(2)求點(diǎn)B到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足,則的前20項(xiàng)和為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面五邊形ABCDE中,ABCE,且AE2AEC60°,CDEDcosEDC.將△CDE沿CE折起,使點(diǎn)D移動(dòng)到P的位置,且AP得到四棱錐PABCE.

(1)求證:AP⊥平面ABCE;

(2)記平面PAB與平面PCE相交于直線l,求證:ABl.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蚌埠市某中學(xué)高三年級從甲(文)、乙(理)兩個(gè)科組各選出名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲組學(xué)生的平均分是,乙組學(xué)生成績的中位數(shù)是

1)求的值;

2)計(jì)算甲組位學(xué)生成績的方差;

3)從成績在分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線Cρsin2θ2acos θ(a>0),過點(diǎn)P(2,-4)的直線l (t為參數(shù))與曲線C相交于M,N兩點(diǎn).

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)的橢圓的兩焦點(diǎn)分別為雙曲線的頂點(diǎn),直線與橢圓交于兩點(diǎn),且,點(diǎn)是橢圓上異于的任意一點(diǎn),直線外的點(diǎn)滿足, . 

(1)求點(diǎn)的軌跡方程;

(2)試確定點(diǎn)的坐標(biāo),使得的面積最大,并求出最大面積.

查看答案和解析>>

同步練習(xí)冊答案