【題目】如圖,直四棱柱的底面是菱形,,,,分別是,的中點.

1)證明:平面;

2)求二面角的正弦值.

【答案】1)證明見解析(2

【解析】

(1)過,易證,再證明即可; 2)以為坐標原點,以垂直于得直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系,用向量坐標法求解即可.

1)證明:如圖,過,則

,

,,

∴四邊形為平行四邊形,則,

,中點,得中點,而中點,

,,則四邊形為平行四邊形,則,

,

平面,平面,

平面

2)解:以為坐標原點,以垂直于得直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系,

,,

,

設(shè)平面的一個法向量為,

,取,得,

又平面的一個法向量為,

因為

.

∴二面角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,平面底面ABC,四邊形是正方形,,Q是的中點,且,

求證:平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, ,平面 平面 、分別為的中點.

(1)求證: 平面;

(2)求證: ;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有12個點,且任意三點不共線,以其中任意一點為始點,另一點為終點作向量,且作出所有的向量.其中3邊向量的和為零向量的三角形稱為零三角形”.求以這些點為頂點的零三角形個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.

1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2)已知每檢測一件產(chǎn)品需要費用50元,設(shè)表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解使用手機是否對學(xué)生的學(xué)習(xí)有影響,某校隨機抽取100名學(xué)生,對學(xué)習(xí)成績和使用手機情況進行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示(不完整):

使用手機

不使用手機

總計

學(xué)習(xí)成績優(yōu)秀

10

40

學(xué)習(xí)成績一般

30

總計

100

(Ⅰ)補充完整所給表格,并根據(jù)表格數(shù)據(jù)計算是否有99.9%的把握認為學(xué)生的學(xué)習(xí)成績與使用手機有關(guān);

(Ⅱ)現(xiàn)從上表不使用手機的學(xué)生中按學(xué)習(xí)成績是否優(yōu)秀分層抽樣選出6人,再從這6人中隨機抽取3人,記這3人中“學(xué)習(xí)成績優(yōu)秀”的人數(shù)為,試求的分布列與數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對名小學(xué)六年級學(xué)生進行了問卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過為“肥胖”.

常喝

不常喝

合計

肥胖

2

不肥胖

18

合計

30

已知在全部人中隨機抽取人,抽到肥胖的學(xué)生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為肥胖與常喝碳酸飲料有關(guān)?請說明你的理由;

(3)已知常喝碳酸飲料且肥胖的學(xué)生中恰有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中隨機抽取2人參加一個有關(guān)健康飲食的電視節(jié)目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機各選一匹進行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果一個正整數(shù)n在三進制下的各位數(shù)字之和能被3整除,則稱n為“恰當數(shù)”。求S={1,2,...,2005}中全體恰當數(shù)之和。

查看答案和解析>>

同步練習(xí)冊答案