已知函數(shù)數(shù)學(xué)公式,
(1)若函數(shù)f(x)在[1,+∞)上是增函數(shù),求正實(shí)數(shù)a的取值范圍;
(2)a=1時(shí),求f(x)在數(shù)學(xué)公式上的最大值和最小值;
(3)a=1時(shí),求證:對大于1的正整數(shù)n,數(shù)學(xué)公式

解:(1)由已知:,
依題意:對x∈[1,+∞)成立,
∴ax-1≥0,對x∈[1,+∞)恒成立,即,對x∈[1,+∞)恒成立,
,即a≥1.
(2)當(dāng)a=1時(shí),,
,則f'(x)<0,
若x∈(1,2],則f'(x)>0,
故x=1是函數(shù)f(x)在區(qū)間上唯一的極小值點(diǎn),也就是最小值點(diǎn),
故f(x)min=f(1)=0.
,
∵e3>2.73=19.683>16,
,∴,
∴f(x)在上最大值是=1-ln2,
∴f(x)在最大1-ln2,最小0.
(3)當(dāng)a=1時(shí),由(1)知,在[1,+∞)是增函數(shù).
當(dāng)n>1時(shí),令,則x>1,∴f(x)>f(1)=0,
,

分析:(1)若函數(shù)f(x)在[1,+∞)上是增函數(shù),則[1,+∞)是函數(shù)增區(qū)間的子區(qū)間,求函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0,求出函數(shù)的單調(diào)增區(qū)間,再讓[1,+∞)的區(qū)間端點(diǎn)與函數(shù)增區(qū)間的區(qū)間端點(diǎn)比較即可.
(2)a=1時(shí),求f(x)的導(dǎo)數(shù),再令導(dǎo)數(shù)等于0,得到的x的值為函數(shù)的極值點(diǎn),在借助函數(shù)在的單調(diào)性,判斷函數(shù)當(dāng)x為何值時(shí)有最大值,何時(shí)有最小值.
(3)借助(2)中判斷的函數(shù)在的單調(diào)性,把證明轉(zhuǎn)化為比較函數(shù)值大小的問題.
點(diǎn)評:本題主要考查導(dǎo)函數(shù)與原函數(shù)的單調(diào)性,極值之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.導(dǎo)函數(shù)等于于0時(shí)為極值點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個(gè)保值區(qū)間;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省高三上學(xué)期10月月考文科數(shù)學(xué)卷 題型:選擇題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052222400076562750/SYS201205222241225937291841_ST.files/image002.png">,部分函數(shù)值如表所示,其導(dǎo)函數(shù)的圖象如圖所示,若正數(shù),滿足,則的取值范圍是(  )

-3

0

6

1

1

 

 

 

 

 

A.            B.           C.    D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分

)已知函數(shù)                                       ,(>0),若函

    數(shù)的最小正周期為

(1)求的值,并求函數(shù)的最大值;

(2)若0<x<,當(dāng)f(x)=時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊答案