【題目】設(shè)橢圓的左右焦點(diǎn)分別為F1F2,點(diǎn)P 在橢圓上運(yùn)動(dòng), 的最大值為m, 的最小值為n,且m≥2n,則該橢圓的離心率的取值范圍為________

【答案】[,1

【解析】 ,

,

, ,

的最大值,設(shè),則 , 的最小值為 ,,

,解得,故答案為

【方法點(diǎn)晴】本題主要考查平面向量數(shù)量積公式、利用橢圓定義與的簡(jiǎn)單性質(zhì)求橢圓的離心率范圍,屬于中檔題.求解與橢圓性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫(huà)出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問(wèn)題應(yīng)先將 用有關(guān)的一些量表示出來(lái),再利用其中的一些關(guān)系構(gòu)造出關(guān)于的不等式等式,從而求出的范圍.本題是利用構(gòu)造出關(guān)于的不等式,最后解出的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從4名男生和2名女生中任選3人參加演講比賽,設(shè)隨機(jī)變量ξ表示所選3人中女生的人數(shù).

(1)求所選3人中女生人數(shù)ξ≤1的概率;

(2)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù), 是大于0的常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

(1)求圓的極坐標(biāo)方程和圓的直角坐標(biāo)方程;

(2)分別記直線 , 與圓、圓的異于原點(diǎn)的焦點(diǎn)為, ,若圓與圓外切,試求實(shí)數(shù)的值及線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線過(guò)點(diǎn)且傾斜角為.

(1)求曲線的直角坐標(biāo)方程和直線的參數(shù)方程;

(2)設(shè)直線與曲線交于, 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為1, 的中點(diǎn).

求證: ∥平面;

)求與平面 所成角的正弦值;

(Ⅲ)試問(wèn)線段上是否存在點(diǎn),使?若存在,求 的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在三棱錐中,是直角三角形,,點(diǎn)分別為的中點(diǎn).

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn) M是拋物線Cy2=2pxp0)上一點(diǎn),F是拋物線焦點(diǎn), =60°,|FM|=4

1)求拋物線C方程;

2D﹣1,0),過(guò)F的直線l交拋物線CAB兩點(diǎn),以F為圓心的圓F與直線AD相切,試判斷并證明圓F與直線BD的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù)(其中

1)求實(shí)數(shù)m的值;

2)已知關(guān)于x的方程在區(qū)間上有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍;

3)當(dāng)時(shí),的值域是,求實(shí)數(shù)na的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為ab,c,已知a=bcosC+csinB.

)求B;

)若b=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案