3.函數(shù)y=e|x|•sinx的圖象大致為( 。
A.B.C.D.

分析 利用函數(shù)的奇偶性排除選項(xiàng),然后通過(guò)函數(shù)的特殊點(diǎn)判斷即可.

解答 解:函數(shù)y=e|x|•sinx,函數(shù)是奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱(chēng),排除B、C,
當(dāng)x∈(0,π),函數(shù)y=e|x|•sinx>0,函數(shù)的圖象在第一象限,排除D,
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性以及特殊點(diǎn)的位置是判斷函數(shù)的圖象的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和Sn=n2an(n≥2),且a1=1,
(1)計(jì)算a2、a3、a4,猜想數(shù)列{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.觀察下列(如圖)數(shù)表規(guī)律,則數(shù)2007的箭頭方向是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知向量$\overrightarrow a≠\overrightarrow e$,$|\overrightarrow e|=1$,對(duì)任意t∈R,恒有$|\overrightarrow a-t\overrightarrow e|≥|\overrightarrow a-2\overrightarrow e|$,則( 。
A.$\overrightarrow a⊥\overrightarrow e$B.$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$C.$\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$D.$(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.正項(xiàng)數(shù)列{an},a1=1,前n項(xiàng)和Sn滿足${S_n}•\sqrt{{S_{n-1}}}-{S_{n-1}}•\sqrt{S_n}=2\sqrt{{S_n}•{S_{n-1}}}(n≥2)$,則sn=$\frac{1}{(2n-1)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知集合A={log2x,4,8},B={4,5}.若A∪B={1,4,5,8},則實(shí)數(shù)x的值為2,A∩B={4};令U=A∪B,則∁UA={5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)a,b∈R,復(fù)數(shù)$\frac{i-2}{1+2i}=a+bi$,則a2+b2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知復(fù)數(shù)z=(2+i)m2-$\frac{6m}{1-i}$-2(1-i),當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是 
(1)虛數(shù),
(2)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在平面直角坐標(biāo)系中,角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,終邊過(guò)點(diǎn)P(-$\sqrt{3}$,-1),sin($\frac{π}{2}$-2α)=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案