判斷下列函數(shù)的奇偶性,并證明:
(1)f(x)=x+
1
x
(2)f(x)=x4-1.
(1)f(x)=x+
1
x
為奇函數(shù),(2)f(x)=x4-1為偶函數(shù).
證明:(1)∵x≠0∴f(x)=x+
1
x
的定義域為{x|x≠0},
又f(-x)=-x-
1
x
=-(x+
1
x
)=-f(x)

f(x)=x+
1
x
為奇函數(shù);
(2)∵)f(x)=x4-1的定義域為R,
f(-x)=(-x)4-1=f(x),
∴f(x)=x4-1為偶函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)上的奇函數(shù),,當(dāng)時,,則          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對稱,且當(dāng)x∈[ 2,3 ] 時, 222233.(1)求的解析式;(2)若上為增函數(shù),求的取值范圍;(3)是否存在正整數(shù),使的圖象的最高點落在直線上?若存在,求出的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)=ax2-bx+1.
(1)若f(x)<0的解集是(
1
4
,
1
3
)
,求實數(shù)a,b的值;
(2)若a+b+2=0,且函數(shù)f(x)>3x+1,x∈(0,1)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

試補充定義f(0),使函數(shù)f(x)=
x2+x
x
在點x=0處連續(xù),那么f(0)等于( 。
A.0B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)是R上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時,f(x)=x.
(Ⅰ)求f(π)的值;
(Ⅱ)作出當(dāng)-4≤x≤4時函數(shù)f(x)的圖象,并求它與x軸所圍成圖形的面積;
(Ⅲ)直接寫出函數(shù)f(x)在R上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=-x2+a(5-a)x+b.
(1)若不等式f(x)>0的解集為(-1,7)時,求實數(shù)a,b的值;
(2)當(dāng)a∈[-1,2)時,f(3)<0恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=loga丨x+b丨在定義域內(nèi)具有奇偶性,f(b-2)與f(a+1)的大小關(guān)系是( 。
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是偶函數(shù),且在(-∞,0)上遞減,若x∈[
1
2
,1]時,f(ax+1)≤f(x+2)恒成立,則實數(shù)a的取值范圍是( 。
A.[-4,2]B.(-∞,2]C.[-4,+∞)D.[-4,-2]

查看答案和解析>>

同步練習(xí)冊答案