已知,

   (Ⅰ)當(dāng)時(shí),求函數(shù)的最小正周期;

   (Ⅱ)當(dāng),,,是銳角時(shí),求的值。

解:(Ⅰ)∵,

 

       

∴該函數(shù)的最小正周期是。        

(Ⅱ)∵

         ∵是銳角,∴         

         ∵,∴,即   

         ∵是銳角,∴ 

         ∴

                即。 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x•2x,當(dāng)f'(x)=0時(shí),x=
-
1
ln2
-
1
ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x是奇函數(shù),當(dāng)x<0時(shí)f(x)=x(x+2),則當(dāng)x>0時(shí),f(x)=
-x2+2x
-x2+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線
x2
4
+
y2
m
=1,當(dāng)m∈[-2,-1]時(shí),該曲線的離心率e的取值范圍是
[
5
2
6
2
]
[
5
2
,
6
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦東新區(qū)一模)設(shè)函數(shù)T(x)=
2x,  0≤x<
1
2
2(1-x),  
1
2
≤x≤1

(1)求函數(shù)y=T(x2)和y=(T(x))2的解析式;
(2)是否存在實(shí)數(shù)a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當(dāng)x∈[ 0 ,
1
16
 ]
時(shí),求y=T4(x)的解析式;
已知下面正確的命題:當(dāng)x∈[ 
i-1
16
 ,
i+1
16
 ]
時(shí)(i∈N*,1≤i≤15),都有T4(x)=T4(
i
8
-x)
恒成立.
②若方程T4(x)=kx恰有15個(gè)不同的實(shí)數(shù)根,確定k的取值;并求這15個(gè)不同的實(shí)數(shù)根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=kx+2k+1,當(dāng)-1≤x≤1時(shí),y的值有正也有負(fù),則k的取值范圍是(  )
A、k<0或k>1
B、0<k<1
C、-1<k<-
1
3
D、k<-1或k>-
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案