【題目】已知動點E到點A與點B的直線斜率之積為,點E的軌跡為曲線C.
(1)求C的方程;
(2)過點D作直線l與曲線C交于, 兩點,求的最大值.
【答案】(1)(2).
【解析】試題分析:
(1)直接設動點的坐標為,把已知條件用數(shù)學式子翻譯出來并化簡即可,同時要注意變量的取值范圍;
(2)按直線的斜率存在不存在分類,斜率不存在時,直線方程為,直接求出坐標,計算出數(shù)量積;當直線斜率存在時,設交點坐標為,設方程為,代入曲線的方程,消去,由韋達定理可得,計算出數(shù)量積,并把代入可得關(guān)于的函數(shù),再由不等式知識求得最大值.
試題解析:
(1)設,則.因為E到點A,與點B的斜率之積為,所以,整理得C的方程為.
(2)當l垂直于軸時,l的方程為,代入得, .
.
當l不垂直于軸時,依題意可設,代入得
.因為,設, .
則, .
綜上 ,當l垂直于軸時等號成立,故的最大值是.
科目:高中數(shù)學 來源: 題型:
【題目】設,是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知多面體ABC﹣A1B1C1中,AA1,BB1,CC1均垂直于平面ABC,AB⊥AC,AA1=4,CC1=1,AB=AC=BB1=2.
(Ⅰ)求證:A1C⊥平面ABC1;
(Ⅱ)求二面角B﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成3元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元.假設同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到頻數(shù)表如下.
甲公司送餐員送餐單數(shù)頻數(shù)表:
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表:
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
根據(jù)上表數(shù)據(jù),利用所學的統(tǒng)計學知識:
(1)求甲公司送餐員日平均工資;
(2)某人擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日平均工資的角度考慮,他應該選擇去哪家公司應聘,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題p:x0∈(1,+∞),使得5+|x0|=6.q:x∈(0,+∞),+81x≥a.
(1)若a=9,判斷命題¬p,p∨q,(¬p)∧(¬q)的真假,并說明理由;
(2)設命題r:x0∈R,x02+2x0+a-9≤0判斷r成立是q成立的什么條件,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,離心率為,動點M(2,t)().
(1)求橢圓的標準方程;
(2)求以OM為直徑且截直線所得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,證明線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點到直線的距離為.
(1)求拋物線的標準方程;
(2)設點是拋物線上的動點,若以點為圓心的圓在軸上截得的弦長均為4,求證:圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸,離心率為,且長軸長是短軸長的倍.
(1)求橢圓的標準方程;
(2)設過橢圓左焦點的直線交于, 兩點,若對滿足條件的任意直線,不等式 恒成立,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com