在平面直角坐標(biāo)系
中,已知點
,動點
在
軸上的正射影為點
,且滿足直線
.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)當(dāng)
時,求直線
的方程.
試題分析:(Ⅰ)屬直接法求軌跡問題,再根據(jù)
列式子時,可根據(jù)直線垂直斜率相乘等于
列出方程,但需注意斜率存在與否的問題,還可轉(zhuǎn)化為向量垂直問題,用數(shù)量積為0列出方程(因此法不用討論故常選此法解決直線垂直問題)。因點
不能與原點重合故
。(Ⅱ)
即直線
的傾斜角為
或
。故可求出直線
的斜率,由點斜式可求直線
的方程。
試題解析:解:(Ⅰ)設(shè)
,則
,
,
. 2分
因為 直線
,
所以
,即
. 4分
所以 動點
的軌跡C的方程為
(
). 5分
(Ⅱ)當(dāng)
時,因為
,所以
.
所以 直線
的傾斜角為
或
.
當(dāng)直線
的傾斜角為
時,直線
的方程為
; 8分
當(dāng)直線
的傾斜角為
時,直線
的方程為
. 10分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
上的點
到左右兩焦點
的距離之和為
,離心率為
.
(1)求橢圓的方程;
(2)過右焦點
的直線
交橢圓于
兩點,若
軸上一點
滿足
,求直線
的斜率
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知頂點是坐標(biāo)原點,對稱軸是
軸的拋物線經(jīng)過點
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)直線
過定點
,斜率為
,當(dāng)
為何值時,直線與拋物線有公共點?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系
中,已知
分別是橢圓
的左、右焦點,橢圓
與拋物線
有一個公共的焦點,且過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)點
是橢圓
在第一象限上的任一點,連接
,過
點作斜率為
的直線
,使得
與橢圓
有且只有一個公共點,設(shè)直線
的斜率分別為
,
,試證明
為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作
,設(shè)
交
于點
,
證明:當(dāng)點
在橢圓上移動時,點
在某定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系中,已知點
及直線
,曲線
是滿足下列兩個條件的動點
的軌跡:①
其中
是
到直線
的距離;②
(1) 求曲線
的方程;
(2) 若存在直線
與曲線
、橢圓
均相切于同一點,求橢圓
離心率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓
的左、右頂點分別為
、
,離心率
.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且
.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設(shè)直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且
,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知定點
A (
p為常數(shù),
p>0),
B為
x軸負(fù)半軸上的一個動點,動點
M使得|
AM|=|
AB|,且線段
BM的中點
G在
y軸上.
(1)求動點
M的軌跡
C的方程;
(2)設(shè)
EF為曲線
C的一條動弦(
EF不垂直于
x軸),其垂直平分線與
x軸交于點
T(4,0),當(dāng)
p=2時,求|
EF|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
直線
與曲線
的交點個數(shù)是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
過橢圓
的左頂點
的斜率為
的直線交橢圓于另一個點
,且點
在
軸上的射影恰好為右焦點
,若
,則橢圓離心率的取值范圍是_____________.
查看答案和解析>>