【題目】已知f(x)=1nx2x+1,其中a≠0.
(1)當(dāng)a=1時(shí),求f(x)的極值;
(2)當(dāng)a>0時(shí),證明:f(x).
【答案】(1)f(x)的極大值為﹣2,無極小值(2)證明見解析
【解析】
(1)對(duì)f(x)求導(dǎo),求出函數(shù)單調(diào)性,求出極值;
(2)證明f(x)即證明f(x)max,利用導(dǎo)數(shù)求出f(x)的最大值即可.
解:(1)當(dāng)a=1時(shí),f(x)=lnx2x+1,
所以f(x),(x>0)
令f'(x)>0得f(x)在(0,1)單調(diào)遞增,
令f'(x)<0得f(x)在(1,+∞)單調(diào)遞減,
所以當(dāng)x=1時(shí),f(x)取得極大值f(1)=﹣2,無極小值;
(2)當(dāng)a>0時(shí),f'(x)(x>0),
令g(x)=﹣2x2+x+a,則g(0)=a>0,又g(x)開口向下,且對(duì)稱軸為x,
所以存在x0使得g(x0)=0,即a=2x0,
所以當(dāng)x∈(0,x0)時(shí),f(x)單調(diào)遞增,(x0,+∞)是單調(diào)遞減,
所以當(dāng)x=x0時(shí),f(x)取得最大值f(x0),
f(x0)=lnx02x0+1=lnx02x0+1=lnx0﹣4x0+2,
令h(x0)=f(x0),
所以當(dāng)x0時(shí),h'(x0)0,
所以在h(x0)(上單調(diào)遞減,
所以h(x0)<h()=lnln,
所以原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,《宋人撲棗圖軸》是作于宋朝的中國(guó)古畫,現(xiàn)收藏于中國(guó)臺(tái)北故宮博物院.該作品簡(jiǎn)介:院角的棗樹結(jié)實(shí)累累,小孩群來攀扯,枝椏不;蝿(dòng),粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個(gè)舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個(gè)動(dòng)作,四人每人模仿一個(gè)動(dòng)作.若他們采用抽簽的方式來決定誰模仿哪個(gè)動(dòng)作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形ABCD中,AB⊥BC,∠BCD=120°,△ABD是邊長(zhǎng)為2的正三角形,E是AB邊上的動(dòng)點(diǎn),則的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,右焦點(diǎn)到直線的距離為1.
求橢圓的標(biāo)準(zhǔn)方程;
若P為橢圓上的一點(diǎn)點(diǎn)P不在y軸上,過點(diǎn)O作OP的垂線交直線于點(diǎn)Q,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,中心為坐標(biāo)原點(diǎn)O的兩圓半徑分別為,,射線OT與兩圓分別交于A、B兩點(diǎn),分別過A、B作垂直于x軸、y軸的直線、,交于點(diǎn)P.
(1)當(dāng)射線OT繞點(diǎn)O旋轉(zhuǎn)時(shí),求P點(diǎn)的軌跡E的方程;
(2)直線l:與曲線E交于M、N兩點(diǎn),兩圓上共有6個(gè)點(diǎn)到直線l的距離為時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列同時(shí)滿足條件:①存在互異的使得(為常數(shù));
②當(dāng)且時(shí),對(duì)任意都有,則稱數(shù)列為雙底數(shù)列.
(1)判斷以下數(shù)列是否為雙底數(shù)列(只需寫出結(jié)論不必證明);
①; ②; ③
(2)設(shè),若數(shù)列是雙底數(shù)列,求實(shí)數(shù)的值以及數(shù)列的前項(xiàng)和;
(3)設(shè),是否存在整數(shù),使得數(shù)列為雙底數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生態(tài)農(nóng)莊有一塊如圖所示的空地,其中半圓O的直徑為300米,A為直徑延長(zhǎng)線上的點(diǎn),米,B為半圓上任意一點(diǎn),以AB為一邊作等腰直角,其中BC為斜邊.
若;,求四邊形OACB的面積;
現(xiàn)決定對(duì)四邊形OACB區(qū)域地塊進(jìn)行開發(fā),將區(qū)域開發(fā)成垂釣中心,預(yù)計(jì)每平方米獲利10元,將區(qū)域開發(fā)成親子采摘中心,預(yù)計(jì)每平方米獲利20元,則當(dāng)為多大時(shí),垂釣中心和親子采摘中心獲利之和最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com