11.已知p:x≥k,q:(x-1)(x+2)>0,若p是q的充分不必要條件,則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,-2)B.[-2,+∞)C.(1,+∞)D.[1,+∞)

分析 利用不等式的解法、充分不必要條件的意義即可得出.

解答 解:q:(x-1)(x+2)>0,解得x>1或x<-2.
又p:x≥k,p是q的充分不必要條件,則實(shí)數(shù)k>1.
故選:C.

點(diǎn)評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.極坐標(biāo)系中橢圓C的方程為ρ2=$\frac{2}{co{s}^{2}θ+2si{n}^{2}θ}$,以極點(diǎn)為原點(diǎn),極軸為x軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(1)若橢圓上任一點(diǎn)坐標(biāo)為P(x,y),求${x^2}+\sqrt{2}xy$的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點(diǎn)Q,且直線AB與CD的傾斜角互補(bǔ),求證:|QA|•|QB|=|QC|•|QD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一個焦點(diǎn)為F(1,0),離心率為$\frac{{\sqrt{2}}}{2}$,過點(diǎn)F的動直線交M于A,B兩點(diǎn),若x軸上的點(diǎn)P(t,0)使得∠APO=∠BPO總成立(O為坐標(biāo)原點(diǎn)),則t=(  )
A.2B.$\sqrt{2}$C.$-\sqrt{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,平面ABCD⊥平面BCF,四邊形ABCD是菱形,∠BCF=90°.
(1)求證:BF=DF;
(2)若點(diǎn)E為AF的中點(diǎn),∠BCD=60°,且BC=CF=2,求四面體BDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(2x+φ)+2sin2x(|φ|<$\frac{π}{2}$)的圖象過點(diǎn)($\frac{π}{6}$,$\frac{3}{2}$).
(1)求函數(shù)f(x)在[0,$\frac{π}{2}$]的最小值;
(2)設(shè)角C為銳角,△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若x=C是曲線y=f(x)的一條對稱軸,且△ABC的面積為2$\sqrt{3}$,a+b=6,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn,等比數(shù)列{bn}的首項(xiàng)b1=1,且a2=b3,S3=6b2,n∈N*
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=bn+(-1)nan,記數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{3}$,cos$\frac{x}{3})$,$\overrightarrow{n}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊,且a=2,(2a-b)cosC=ccosB,$f(A)=\frac{3}{2}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|2x>1},B={x|x2-5x+6<0},則∁AB( 。
A.(2,3)B.(-∞,2]∪[3,+∞)C.(0,2]∪[3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$f(x)=cos(2x-\frac{2π}{3})+4{cos^2}x-2-\frac{3}{3x-π}(x∈[-\frac{11π}{12},\frac{19π}{12}])$所有零點(diǎn)之和為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.$\frac{8π}{3}$

查看答案和解析>>

同步練習(xí)冊答案