設(shè)橢圓C∶(a>0)的兩個焦點(diǎn)是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點(diǎn).

(1)求a的取值范圍;

(2)(理)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;

(文)如果橢圓的兩個焦點(diǎn)與短軸的兩個端點(diǎn)恰好是正方形的四個頂點(diǎn),求橢圓的方程;

(3)(理)對(2)中的橢圓C,直線l∶y=kx+m(k≠0)與C交于不同的兩點(diǎn)M、N,若線段MN的垂直平分線恒過點(diǎn)A(0,-1),求實(shí)數(shù)m的取值范圍.

(文)過(2)中橢圓右焦點(diǎn)F2且不與坐標(biāo)軸垂直的直線l交橢圓于M、N兩點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo)的取值范圍.

答案:
解析:

  (1)由已知,,

  ∴方程組有實(shí)數(shù)解,從而,  3分

  故,所以,即的取值范圍是.  4分

  (2)(理)設(shè)橢圓上的點(diǎn)到一個焦點(diǎn)的距離為,

  則

  ().  6分

  ∵,∴當(dāng)時,,  7分

  于是,,解得.  9分

  ∴所求橢圓方程為.  10分

  (直接給出的扣3分)

  (2)(文)由已知可得,從而,  8分

  所以所求橢圓方程是.  10分

  (3)(理)由(*)

  ∵直線與橢圓交于不同兩點(diǎn),∴△,即.  12分

 、僭O(shè)、,則、是方程(*)的兩個實(shí)數(shù)解,

  ∴,∴線段的中點(diǎn)為,

  又∵線段的垂直平分線恒過點(diǎn),∴

  即,即  14分

 、谟散,②得,又由②得,

  ∴實(shí)數(shù)的取值范圍是.  16分

  (3)(文),由題意,直線的斜率存在且不為,設(shè)直線的方程為:

  ,由得,(*)

  設(shè),,則是方程(*)的兩個實(shí)數(shù)解,于是,則線段的中點(diǎn)為.  12分

  ∴線段的垂直平分線的方程為,

  在上式中令,得點(diǎn)的橫坐標(biāo)為.  14分

  ∴,所以點(diǎn)的橫坐標(biāo)的取值范圍是.  16分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,設(shè)橢圓C:(ab>0)的左、右兩個焦點(diǎn)分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線l與橢圓C相交,其中一個交點(diǎn)為M(,1).

(1)求橢圓C的方程;

(2)設(shè)橢圓C的一個頂點(diǎn)為B(0,-b),直線BF2交橢圓C于另一點(diǎn)N,求△F1BN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三高考極限壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓C:(“a>b〉0)的左焦點(diǎn)為,橢圓過點(diǎn)P()

(1)求橢圓C的方程;

(2)已知點(diǎn)D(1, 0),直線l:與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題

設(shè)橢圓C:(a〉b>0)的左焦點(diǎn)為,橢圓過點(diǎn)P(

(1)求橢圓C的方程;

(2)已知點(diǎn)D(l,0),直線l:與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林一中2009-2010學(xué)年上學(xué)期期末高二(數(shù)學(xué))試題 題型:解答題

在直角坐標(biāo)系xOy中,設(shè)橢圓C:(ab>0)的左、右兩個焦點(diǎn)分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線l與橢圓C相交,其中一個交點(diǎn)為M(,1).

(1)求橢圓C的方程;

(2)設(shè)橢圓C的一個頂點(diǎn)為B(0,-b),直線BF2交橢圓C于另一點(diǎn)N,求△F1BN的面積.

 

查看答案和解析>>

同步練習(xí)冊答案