如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(1)證明:AB1⊥BC1
(2)求點(diǎn)B到平面AB1C1的距離;
(3)求二面角C1-AB1-A1的大。

證明:(1)如圖建立直角坐標(biāo)系,其為C為坐標(biāo)原點(diǎn),
題意A(2,0,0),B(0,2,0),A1(2,0,2),B1(0,2,2),C1(0,0,2).
,∴∴AB1⊥BC1
解:(2)設(shè)的一個(gè)法向量,


,∴點(diǎn)B到平面AB1C1的距離
(3)解設(shè)是平面A1AB1的一個(gè)法向量



∴二面角C1-AB-A1的大小為60°.
分析:(1)以C點(diǎn)為坐標(biāo)原點(diǎn),CA,CB,CC1為X,Y,Z軸正方向建立空間坐標(biāo)系,分別求出AB1與BC1的方向向量,代入數(shù)量積公式,得到其數(shù)量積為0,即可得到AB1⊥BC1;
(2)求出平面AB1C1的一個(gè)法向量,則AB的方向向量,代入到公式,即可求出
點(diǎn)B到平面AB1C1的距離;
(3)結(jié)合(2)的結(jié)合,再求出平面AB1A1的一個(gè)法向量,代入向量夾角公式,即可得到二面角C1-AB1-A1的大。
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,點(diǎn)到面的距離,異面直線的夾角,其中建立適當(dāng)?shù)目臻g坐標(biāo)系,將問題轉(zhuǎn)化為向量夾角及向量長度問題是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案