如圖,已知四棱錐,底面為菱形,⊥平面,,、分別是、的中點(diǎn)。
(Ⅰ)證明:⊥;
(Ⅱ)若為上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。
(Ⅰ)證明:由四邊形為菱形,,
可得為正三角形。因?yàn)?sub>為的中點(diǎn),所以。 …………1分
又∥,因此。…………………………………………………2分
因?yàn)?sub>平面,平面,所以。 ………3分
而,所以平面。 ………………………………4分
又平面,所以。 ……………………………………5分
(Ⅱ)解:設(shè),為上任意一點(diǎn),連接、
由(Ⅰ)可知:平面,
則為與平面所成的角!6分
在中,,
所以當(dāng)最短時(shí),最大, ………………………………………………7分
即當(dāng)時(shí),最大,此時(shí)。
因此。又,所以,于是。 ……………………8分
因?yàn)?sub>⊥平面,平面,
所以平面平面。 …………………………………………9分
過作于,則由面面垂直的性質(zhì)定理可知:平面,
過作于,連接,
則由三垂線定理可知:為二面角的平面角。 ……………………10分
在中,,
又是的中點(diǎn),在中,
又 ………………………………11分
在中,
即二面角的余弦值為。 ………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知四棱錐,底面為菱形,平面,,、分別是、的中點(diǎn)。
(1)證明:;
(2)若為上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求銳二面角的余弦值;
(3)在(2)的條件下,設(shè),求點(diǎn)到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江紹興一中高二第一學(xué)期期中測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知四棱錐,底面是平行四邊形,點(diǎn)在平面上的射影在邊上,且,.
(Ⅰ)設(shè)是的中點(diǎn),求異面直線與所成角的余弦值;
(Ⅱ)設(shè)點(diǎn)在棱上,且.求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期第一次綜合練習(xí)理科數(shù)學(xué) 題型:解答題
(本題滿分14分)
如圖,已知四棱錐,底面為菱形,平面,
, 是的中點(diǎn),為線段上一點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)若為上的動(dòng)點(diǎn),與平面所成最大角的 正切值為,若二面角的余弦值為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省高三上學(xué)期第一次月考試題文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,已知四棱錐的底面是正方形,,且,點(diǎn)分別在側(cè)棱、上,且。
(Ⅰ)求證:;
(Ⅱ)若,求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分12分)如圖,已知四棱錐,底面為菱形,⊥平面,,、分別是、的中點(diǎn)。
(Ⅰ)證明:⊥;
(Ⅱ)若為上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。
.COM
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com