已知Sn是數(shù)列{an}的前n項和,且a1=
1
2
,
an
an-1
=
n-1
n+1
,則an=
 
,S2010=
 
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:利用“累乘求積”與“裂項求和”即可得出.
解答: 解:∵a1=
1
2
,
an
an-1
=
n-1
n+1

∴an=
an
an-1
an-1
an-2
an-2
an-3
•…•
a3
a2
a2
a1
1
2
=
n-1
n+1
n-2
n
n-3
n-1
•…•
2
4
×
1
3
×
1
2
=
1
n(n+1)
=
1
n
-
1
n+1

∴S2010=(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
2010
-
1
2011
)

=1-
1
2011

=
2010
2011

故答案分別為:
1
n(n+1)
,
2010
2011
點評:本題考查了“累乘求積”與“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有下列五個命題:
①在△ABC中,p:A>B;q:sinA>sinB;則命題p是命題q的充要條件;
②p:數(shù)列{an}是等差數(shù)列,q:數(shù)列{an}是單調(diào)數(shù)列;命題p是命題q的充要條件;
③P:△ABC是銳角△ABC,q:sinA>cosB;則命題p是命題q的充要條件;
④α≠
π
6
或β≠
π
6
是cos(α+β)≠
1
2
成立的必要不充分條件;
⑤a<0是方程ax2+2x+1=0至少有一個負數(shù)根的充分不必要條件.
其中正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓的直徑AB=10cm,C是圓周上一點(不同于A、B點),CD⊥AB于D,CD=3cm,則BD=
 
cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如表是一組實驗的統(tǒng)計數(shù)據(jù):
x0123
y1230
(1)求線性回歸方程
y
=
b
x+
a
?
(2)填寫殘差分布表.(表格在答題卷上).并計算殘差的均值
.
e

(3)求x對y的貢獻率R2?并說明回歸直線方程擬合效果.
(公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
-2
x
;R2=1-
n
i=1
(yi-
yi
)2
n
i=1
(yi-
.
y
)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知數(shù){an}滿足a1=1,an+1=an+2n,數(shù)列{bn}滿足bn+1=bn+
b
2
n
n
,b1
=1.
(1)求數(shù)列{an}的通項公式;
(2)令cn=
1
an+1bn+nan+1-bn-n
,記Sn=c1+c2+…+cn,求證:
1
2
Sn
<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線方程y2=4x,直線l的方程為x-y+5=0,在拋物線上有一動點P到y(tǒng)軸的距離為d1,到直線l的距離為d2,則d1+d2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,已知S3=7,且a1+3,3a2,a3+4成等差數(shù)列.   
(1)求數(shù)列{an}的通項公式;
(2)令數(shù)列{bn}滿足bn=lna3n+1,記數(shù)列{bn}的前n項和為Tn,求:
ln2
T1
+
ln2
T2
+…+
ln2
Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(4,-2,-4),
b
=(6,-3,2),則(2
a
-3
b
)•(
a
+2
b
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一空間幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

同步練習冊答案