【題目】已知,如圖, ,圖中的一系列圓是圓心分別為, 的兩組同心圓,每組同心圓的半徑依次為, ,

依次遞增,點是某兩圓的一個交點,設:

, 為焦點,且過點的橢圓為

, 為焦點,且過點的雙曲線為,

)雙曲線離心率__________

)若以軸正方向,線段中點為坐標原點建立平面直角坐標系,則

橢圓方程為__________

3雙曲線漸近線方程為__________

4在兩組同心圓的交點中,在橢圓上的點共__________個.

【答案】 (1) (2) (3) (4)

【解析】1由圖可知,

在雙曲線,

其離心率,

2)(i在橢圓中, ,

∴橢圓的方程為,

ii∵雙曲線的方程為,

雙曲線的漸近線方程為

3∵橢圓上的各點到、的距離之和為定理

由圖可知共個點滿足題意.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且對任意正整數(shù),滿足

1)求數(shù)列的通項公式.

2)設,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的正方形,底面,的中點,的中點.

(1)求證:平面;

(2)求異面直線所成角的正切值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列中, ,且.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位將舉辦慶典活動,要在廣場上豎立一形狀為等腰梯形的彩門BADC (如圖),設計要求彩門的面積為S (單位:m2)高為h(單位:m)(S,h為常數(shù)),彩門的下底BC固定在廣場地面上,上底和兩腰由不銹鋼支架構成,設腰和下底的夾角為α,不銹鋼支架的長度和記為l.
(1)請將l表示成關于α的函數(shù)l=f(α);
(2)問當α為何值時l最小?并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,,則下面結論正確的是( )

A. 上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

B. 上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

C. 上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

D. 上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,GPB的中點.

(1)根據(jù)三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,數(shù)列滿足 .

(Ⅰ)當時,求證:數(shù)列為等差數(shù)列并求

(Ⅱ)證明:對于一切正整數(shù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某山區(qū)小學有100名四年級學生,將全體四年級學生隨機按0099編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學生,各組內抽取的編號按依次增加10進行系統(tǒng)抽樣.

1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學生的號碼;

2)分別統(tǒng)計這10名學生的數(shù)學成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;

3)在(2)的條件下,從這10名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.

查看答案和解析>>

同步練習冊答案