【題目】設(shè).
(1)討論在上的單調(diào)性;
(2)令,試證明在上有且僅有三個(gè)零點(diǎn).
【答案】(1)的單調(diào)遞增區(qū)間是,遞減區(qū)間是;(2)證明見(jiàn)解析.
【解析】
(1)首先求導(dǎo)得到,再根據(jù)導(dǎo)函數(shù)的正負(fù)性即可得到函數(shù)的單調(diào)區(qū)間.
(2)首先根據(jù),得到是的一個(gè)零點(diǎn),再根據(jù)是偶函數(shù)得到在上的零點(diǎn)個(gè)數(shù),只需確定時(shí),的零點(diǎn)個(gè)數(shù)即可,再求出在時(shí)的單調(diào)性和最值,確定其零點(diǎn)個(gè)數(shù)即可.
,
令,則或.
時(shí),,單調(diào)遞增,
時(shí),單調(diào)遞減,
時(shí),,單調(diào)遞增,
時(shí),,單調(diào)遞減.
的單調(diào)遞增區(qū)間是,
遞減區(qū)間是.
(2),
因?yàn)?/span>,所以是的一個(gè)零點(diǎn).
所以是偶函數(shù),
即要確定在上的零點(diǎn)個(gè)數(shù),需確定時(shí),的零點(diǎn)個(gè)數(shù)即可.
①當(dāng)時(shí),
令,即或.
時(shí),單調(diào)遞減,
且,
時(shí),,單調(diào)遞增,
且
在有唯一零點(diǎn)
②當(dāng)時(shí),由于,.
而在單調(diào)遞增,
所以恒成立,故在無(wú)零點(diǎn),
所以在有一個(gè)零點(diǎn),
由于是偶函數(shù),所以在有一個(gè)零點(diǎn),而,
綜上在有且僅有三個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B,O為坐標(biāo)原原點(diǎn),點(diǎn)O到直線AB的距離為,的面積為1.
(1)求榷圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于C,D兩點(diǎn),若直線直線AB,設(shè)直線AC,BD的斜率分別為證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )
A.y=x2B.C.y=2|x|D.y=cosx
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開放40年來(lái),我國(guó)城市基礎(chǔ)設(shè)施發(fā)生了巨大的變化,各種交通工具大大方便了人們的出行需求.某城市的A先生實(shí)行的是早九晚五的工作時(shí)間,上班通常乘坐公交或地鐵加步行.已知從家到最近的公交站或地鐵站都需步行5分鐘,乘坐公交到離單位最近的公交站所需時(shí)間Z1(單位:分鐘)服從正態(tài)分布N(33,42),下車后步行再到單位需要12分鐘;乘坐地鐵到離單位最近的地鐵站所需時(shí)間Z2(單位:分鐘)服從正態(tài)分布N(44,22),從地鐵站步行到單位需要5分鐘.現(xiàn)有下列說(shuō)法:①若8:00出門,則乘坐公交一定不會(huì)遲到;②若8:02出門,則乘坐公交和地鐵上班遲到的可能性相同;③若8:06出門,則乘坐公交比地鐵上班遲到的可能性大;④若8:12出門,則乘坐地鐵比公交上班遲到的可能性大.則以上說(shuō)法中正確的序號(hào)是_____.
參考數(shù)據(jù):若Z~N(μ,σ2),則P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544,P(μ﹣3σ<Z≤μ+3σ)=0.9974
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全民參與是打贏新型冠狀病毒防疫戰(zhàn)的根本方法.在防控疫情的過(guò)程中,某小區(qū)的“卡口”工作人員由“社區(qū)工作者”“下沉干部”“志愿者”三種身份的人員構(gòu)成,其中社區(qū)工作者3人,下沉干部2人,志愿者1人.某電視臺(tái)某天上午隨機(jī)抽取2人進(jìn)行訪談,某報(bào)社在該天下午隨機(jī)抽取1人進(jìn)行訪談.
(1)設(shè)表示上午抽到的社區(qū)工作者的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)設(shè)為事件“全天抽到的名工作人員的身份互不相同”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的六個(gè)面的中心可構(gòu)成一個(gè)正八面體,現(xiàn)從正方體內(nèi)部任取一個(gè)點(diǎn),則該點(diǎn)落在這個(gè)正八面體內(nèi)部的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了比較兩種治療某病毒的藥(分別稱為甲藥,乙藥)的療效,某醫(yī)療團(tuán)隊(duì)隨機(jī)地選取了服用甲藥的患者和服用乙藥的患者進(jìn)行研究,根據(jù)研究的數(shù)據(jù),繪制了如圖1等高條形圖
.
(1)根據(jù)等高條形圖,判斷哪一種藥的治愈率更高,不用說(shuō)明理由;
(2)為了進(jìn)一步研究?jī)煞N藥的療效,從服用甲藥的治愈患者和服用乙藥的治愈患者中,分別抽取了10名,記錄他們的治療時(shí)間(單位:天),統(tǒng)計(jì)并繪制了如圖2莖葉圖,從莖葉圖看,哪一種藥的療效更好,并說(shuō)明理由;
(3)標(biāo)準(zhǔn)差s除了可以用來(lái)刻畫一組數(shù)據(jù)的離散程度外,還可以刻畫每個(gè)數(shù)據(jù)偏離平均水平的程度,如果出現(xiàn)了治療時(shí)間在(3s,3s)之外的患者,就認(rèn)為病毒有可能發(fā)生了變異,需要對(duì)該患者進(jìn)行進(jìn)一步檢查,若某服用甲藥的患者已經(jīng)治療了26天還未痊愈,請(qǐng)結(jié)合(2)中甲藥的數(shù)據(jù),判斷是否應(yīng)該對(duì)該患者進(jìn)行進(jìn)一步檢查?
參考公式:s,
參考數(shù)據(jù):48.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)絡(luò)營(yíng)銷和電子商務(wù)的興起,人們的購(gòu)物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購(gòu)物者進(jìn)行采訪,5名男性購(gòu)物者中有3名傾向于選擇網(wǎng)購(gòu),2名傾向于選擇實(shí)體店,5名女性購(gòu)物者中有2名傾向于選擇網(wǎng)購(gòu),3名傾向于選擇實(shí)體店.
(1)若從10名購(gòu)物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購(gòu)物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購(gòu)的男性購(gòu)物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,角,,的對(duì)邊分別為,,,,,________.是否存在以,,為邊的三角形?如果存在,求出的面積;若不存在,說(shuō)明理由.
從①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問(wèn)題中并作答.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com