如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù)時(shí)的圖像,且圖像的最高點(diǎn)為B),賽道的中間部分為長千米的直線跑道CD,且CDEF,賽道的后一部分是以O為圓心的一段圓孤

(1)求的值和的大。

(2)若要在圓孤賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草 坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓孤上,且,求當(dāng)“矩形草坪”的面積取最大值時(shí)的值。

解:(1)由條件得

         ∴曲線段FBC的解析式為

         當(dāng)x=0時(shí),CDEF

         。………………………………………6分

    (2)由(1)可知。

         ,“矩形草坪”的面積為

        

        

         !12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù)y=Asin(ωx+
3
)
(A>0,ω>0),x∈[-4,0]時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,2).賽道的中間部分為長
3
千米的直線跑道CD,且CD∥EF.賽道的后一部分是以O(shè)為圓心的一段圓弧
DE

(1)求ω的值和∠DOE的大。
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧
DE
上,且∠POE=θ,求當(dāng)“矩形草坪”的面積取最大值時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)

如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù) ,時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,2)。賽道的中間部分為長千米的直線跑道CD,且CD// EF。賽道的后一部分是以O為圓心的一段圓弧

(1)求的值和的大小;

(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧上,且,求當(dāng)“矩形草坪”的面積取最大值時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市龍岡中學(xué)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù)(A>0,ω>0),x∈[-4,0]時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,2).賽道的中間部分為長千米的直線跑道CD,且CD∥EF.賽道的后一部分是以O(shè)為圓心的一段圓弧
(1)求ω的值和∠DOE的大小;
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧上,且∠POE=θ,求當(dāng)“矩形草坪”的面積取最大值時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省恩施高中高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù)(A>0,ω>0),x∈[-4,0]時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,2).賽道的中間部分為長千米的直線跑道CD,且CD∥EF.賽道的后一部分是以O(shè)為圓心的一段圓弧
(1)求ω的值和∠DOE的大;
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧上,且∠POE=θ,求當(dāng)“矩形草坪”的面積取最大值時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南通市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù)(A>0,ω>0),x∈[-4,0]時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,2).賽道的中間部分為長千米的直線跑道CD,且CD∥EF.賽道的后一部分是以O(shè)為圓心的一段圓弧
(1)求ω的值和∠DOE的大。
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧上,且∠POE=θ,求當(dāng)“矩形草坪”的面積取最大值時(shí)θ的值.

查看答案和解析>>

同步練習(xí)冊答案