【題目】如圖,為橢圓的下頂點(diǎn).過的直線交拋物線兩點(diǎn),的中點(diǎn).

(1)求證:點(diǎn)的縱坐標(biāo)是定值;

(2)過點(diǎn)作與直線傾斜角互補(bǔ)的直線交橢圓于兩點(diǎn).求的值,使得的面積最大.

【答案】(1)證明見解析;(2).

【解析】

1)由題意可求,設(shè),利用的中點(diǎn),求出的坐標(biāo),代入拋物線方程,可得的關(guān)系,再代入點(diǎn)的縱坐標(biāo)即可得出結(jié)果;

2)由題意可得,進(jìn)而可以表示出直線的斜率和直線斜率,則可求出直線的方程,與橢圓方程聯(lián)立,利用韋達(dá)定理,求出的長和點(diǎn)的距離,

從而可以求出,變形,利用基本不等式求其最值,通過等號的成立條件可求出的值.

(1)易知,不妨設(shè),則,代入拋物線方程得:

,得:,∴為定值.

(2)∵點(diǎn)中點(diǎn),∴

∵直線的斜率,直線斜率,

∴直線的方程:,即,不妨記,則

代入橢圓方程整理得:,設(shè),,則

,

,

的距離

所以.

取等號時,,得

所以,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線,的參數(shù)方程化為普通方程;

(Ⅱ)求曲線上的點(diǎn)到曲線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(e是自然對數(shù)的底數(shù)),對任意的R,存在,有,則的取值范圍為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 表示雙曲線,命題 表示橢圓

(1)若命題與命題 都為真命題 的什么條件?

(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)

(2)若 為假命題, 為真命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的焦點(diǎn)為FM是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),O為坐標(biāo)原點(diǎn),記經(jīng)過MF,O三點(diǎn)的圓的圓心為Q,且點(diǎn)Q到拋物線C的準(zhǔn)線的距離為

求點(diǎn)Q的縱坐標(biāo);可用p表示

求拋物線C的方程;

設(shè)直線l與拋物線C有兩個不同的交點(diǎn)A,若點(diǎn)M的橫坐標(biāo)為2,且的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對名小學(xué)六年級學(xué)生進(jìn)行了問卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過為“肥胖”.

常喝

不常喝

合計(jì)

肥胖

2

不肥胖

18

合計(jì)

30

已知在全部人中隨機(jī)抽取人,抽到肥胖的學(xué)生的概率為

(1)請將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?請說明你的理由;

(3)已知常喝碳酸飲料且肥胖的學(xué)生中恰有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中隨機(jī)抽取2人參加一個有關(guān)健康飲食的電視節(jié)目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下列命題:①當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù);②其圖象關(guān)于軸對稱;③無最大值,也無最小值;④在區(qū)間上是增函數(shù);⑤的最小值是。其中所有不正確命題的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(

A. 命題x2=1,x=1”的否命題為:x2=1,x≠1”

B. “m=1”直線x-my=0和直線x+my=0互相垂直的充要條件

C. 命題使得的否定是﹕,均有

D. 命題已知、B為一個三角形的兩內(nèi)角,A=B,sinA=sinB”的否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價.階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價,具體劃分標(biāo)準(zhǔn)如表:

階梯級別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:

(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)的分布列與數(shù)學(xué)期望;

(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.

查看答案和解析>>

同步練習(xí)冊答案