A. | y=2ex-e | B. | y=2ex-2e | C. | y=ex-e | D. | y=ex-1 |
分析 先求出切點的坐標,然后求出x=1處的導(dǎo)數(shù),從而求出切線的斜率,利用點斜式方程即可求出切線方程.
解答 解:∵f(x)=xex,
∴f′(x)=ex+xex,∴f′(1)=2e,又f(1)=e,
∴曲線y=f(x)在點(1,f(1))處的切線方程為y-e=2e(x-1),即y=2ex-e.
故選:A.
點評 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,考查導(dǎo)數(shù)的運用:求切線方程,主要考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點處的導(dǎo)數(shù)即為曲線在該點處切線的斜率,正確求導(dǎo)和運用點斜式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?c>0,方程x2-x+c=0無解 | B. | ?c≤0,方程x2-x+c=0有解 | ||
C. | ?c>0,使方程x2-x+c=0無解 | D. | ?c≤0,使方程x2-x+c=0有解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=x | B. | y2=2x | C. | y2=4x | D. | y2=8x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | (-2,3) | C. | (3,4) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $5\sqrt{3}$ | B. | $\frac{{5\sqrt{3}}}{2}$ | C. | 5 | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com