已知4sin2α-3sinαcosα-5cos2α=1,α是第四象限角,求tan(
2
-α)的值.
考點:同角三角函數(shù)基本關(guān)系的運用,運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:已知等式左邊分母看做“1”,利用同角三角函數(shù)間基本關(guān)系化簡求出tanα的值,所求式子利用誘導(dǎo)公式化簡將tanα的值代入計算即可求出值.
解答: 解:4sin2α-3sinαcosα-5cos2α=
4sin2α-3sinαcosα-5cos2α
sin2α+cos2α
=
4tan2α-3tanα-5
tan2α+1
=1,
整理得:tan2α-tanα-2=0,即(tanα-2)(tanα+1)=0,
解得:tanα=2或tanα=-1,
∵α為第四象限角,
∴tanα=-1,
則tan(
2
-α)=cotα=
1
tanα
=-1.
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,以及運用誘導(dǎo)公式化簡求值,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y,z表示直線(彼此不同)或平面(不重合),則“
x⊥z
y⊥z
⇒x∥y”成立的一個充分條件是( 。
A、x、y、z都是平面
B、x、y、z都是直線
C、x是直線,y、z是平面
D、x、y是平面,z是直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a2+b2=1,c2+d2=1.
(Ⅰ)求證:ab+cd≤1.
(Ⅱ)求a+
3
b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為4的正方形ABCD的邊上有一動點P,沿著折線BCDA由點B起(起點)向點A(終點)運動.設(shè)點P運動的路程為x,△APB的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AA1=A1B1=4,D、E分別為AA1與A1B1的中點.
(1)求異面直線C1D與BE的夾角;
(2)求四面體BDEC1體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C的對邊分別為a,b,c,已知a=2
3
,cosA=-
1
2
,b=2.
(Ⅰ)求c的值;
(Ⅱ)設(shè)f(x)=cos2x+2sin2(x+B),求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式
x+2
m
>1+
x-5
m2

(1)解這個不等式;
(2)當(dāng)此不等式的解集為{x|x>5}時,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若cos
A
2
=
2
5
5
,bc=5.
(Ⅰ)求△ABC的面積;
(Ⅱ)若a=2
5
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
2x+1
x-a
的圖象關(guān)于直線y=x對稱,則實數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊答案