12.已知圓O:(x-3)2+(y-4)2=1,P(x,y)為圓上的動點,則x-y的最大值為$\sqrt{2}$-1.

分析 首先利用參數(shù)方程來表示圓上點坐標為 $\left\{\begin{array}{l}{x=3+cosθ}\\{y=4+sinθ}\end{array}\right.$,再利用三角函數(shù)求最值.

解答 解:由圓方程可設:
$\left\{\begin{array}{l}{x-3=cosθ}\\{y-4=sinθ}\end{array}\right.$⇒$\left\{\begin{array}{l}{x=3+cosθ}\\{y=4+sinθ}\end{array}\right.$,θ∈R
∴x-y=3+cosθ-4-sinθ
=cosθ-sinθ-1
=$\sqrt{2}$sin($\frac{π}{4}-θ$)-1
所以,當$sin(\frac{π}{4}-θ)=1$ 時,x-y取值最大值$\sqrt{2}-1$.
故答案為:$\sqrt{2}-1$

點評 本題主要考查了圓的參數(shù)方程,三角函數(shù)的化簡與最值問題,屬基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.設全集U=R,集合A={x|x2-2x≥0},B={x|y=log2(x2-1)},則(∁UA)∩B=(  )
A.[1,2)B.(1,2)C.(1,2]D.(-∞,-1)∪[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知三棱錐O-ABC,A、B、C三點均在球心為O的球表面上,AB=BC=1,∠ABC=120°,三棱錐O-ABC的體積為$\frac{\sqrt{5}}{4}$,則球O的體積是$\frac{256}{3}$π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.定義在R上的奇函數(shù)f(x)對任意兩個不相等實數(shù)a,b,總有$\frac{f(a)-f(b)}{a-b}$>0成立,則不等式f(m+2)+f(m-6)>0解集是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)y=sin2x的圖象經(jīng)過怎樣的平移變換得到函數(shù)y=sin($\frac{π}{3}-2x$)的圖象( 。
A.向左平移$\frac{2π}{3}$個單位長度B.向左平移$\frac{π}{3}$個單位長度
C.向右平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.“a≤-3”是“f(x)=-|x+a|在[3,+∞)上為減函數(shù)”的什么條件( 。
A.充分不必要B.必要不充分C.充要D.不充分不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下列說法:
①如果直線l與平面α不垂直,那么在α內(nèi)不存在與l垂直的直線;
②過直線外一點有且只有一個平面與已知直線垂直;
③與一個平面的垂線垂直的直線和這個平面平行;
④過平面外一點和這個平面垂直的直線有且只有一條.
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知a=e-2,b=em,且a•b=1,則m=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.一直田徑隊有100名運動員,其中男運動員60人,女運動員40人,要從中抽取一個容量為30的樣本,試確定用何種方法抽取,并寫出具體的實施操作.

查看答案和解析>>

同步練習冊答案